Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Brain Behav Immun ; 107: 215-224, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36273650

RESUMO

Previously we developed a murine model in which postinjury stimulation of an injured area triggers a transition to a nociplastic pain state manifesting as persistent mechanical hypersensitivity outside of the previously injured area. This hypersensitivity was maintained by sex-specific mechanisms; specifically, activated spinal microglia maintained the hypersensitivity only in males. Here we investigated whether spinal microglia drive the transition from acute injury-induced pain to nociplastic pain in males, and if so, how they are activated by normally innocuous stimulation after peripheral injury. Using intraplantar capsaicin injection as an acute peripheral injury and vibration of the injured paw as postinjury stimulation, we found that inhibition of spinal microglia prevents the vibration-induced transition to a nociplastic pain state. The transition was mediated by the ATP-P2X4 pathway, but not BDNF-TrkB signaling. Intrathecally injected GABA receptor agonists after intraplantar capsaicin injection prevented the vibration-induced transition to a nociplastic pain state. Conversely, in the absence of intraplantar capsaicin injection, intrathecally injected GABA receptor antagonists allowed the vibration stimulation of a normal paw to trigger the transition to a spinal microglia-mediated nociplastic pain state only in males. At the spinal level, TNF-α, IL-1ß, and IL-6, but not prostaglandins, contributed to the maintenance of the nociplastic pain state in males. These results demonstrate that in males, the transition from acute injury-induced pain to nociplastic pain is driven by spinal microglia causing neuroinflammation and that peripheral injury-induced spinal GABAergic disinhibition is pivotal for normally innocuous stimulation to activate spinal microglia.


Assuntos
Hiperalgesia , Dor , Animais , Masculino , Camundongos , Glicoproteínas de Membrana , Microglia , Agonistas GABAérgicos
2.
Pain ; 164(2): 402-412, 2023 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-35975896

RESUMO

ABSTRACT: Nociplastic pain conditions develop predominantly in women. We recently established a murine nociplastic pain model by applying postinjury thermal (40°C) stimulation to an injured (capsaicin-injected) area, triggering a transition to a nociplastic pain state manifesting as persistent mechanical hypersensitivity outside of the previously injured area. The nociplastic pain state was centrally maintained by spinal microglia in males but peripherally by ongoing afferent activity at the previously injured area in females. Here, we investigated whether gonadal hormones are critical for the development of this peripherally maintained nociplastic pain state in females. Although the transition to a nociplastic pain state still occurred in ovariectomized females, the pain state was maintained neither by ongoing afferent activity at the previously injured area nor by spinal microglia. Estradiol reconstitution a week before the injury plus postinjury stimulation, but not after the transition had already occurred, restored the development of peripherally maintained nociplastic mechanical hypersensitivity in ovariectomized females. G protein-coupled estrogen receptor antagonism during the transition phase mimicked ovariectomy in gonad-intact females, whereas the receptor antagonism after the transition gradually alleviated the nociplastic mechanical hypersensitivity. At the previously injured area, afferents responsive to allyl isothiocyanate (AITC), a TRPA1 agonist, contributed to the maintenance of nociplastic mechanical hypersensitivity in gonad-intact females. In ex vivo skin-nerve preparations, only AITC-responsive afferents from the nociplastic pain model in gonad-intact females showed ongoing activities greater than control. These results suggest that gonadal hormones are critical for peripherally maintained nociplastic pain state in females by sensitizing AITC-responsive afferents to be persistently active.


Assuntos
Nociceptores , Dor , Masculino , Camundongos , Feminino , Animais , Isotiocianatos , Hormônios Gonadais
3.
Pain ; 163(3): 461-473, 2022 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-34285154

RESUMO

ABSTRACT: Acute injury-induced pain can transition to chronic nociplastic pain, which predominantly affects women. To facilitate studies on the underlying mechanisms of nociplastic pain, we developed a mouse model in which postinjury thermal stimulation (intermittent 40°C water immersion for 10 minutes at 2 hours postcapsaicin) prolongs capsaicin (ie, experimental injury)-induced transient mechanical hypersensitivity outside of the injury area. Although capsaicin injection alone induced mechanical and thermal hypersensitivity that resolved in ∼7 days (slower recovery in females), the postinjury stimulation prolonged capsaicin-induced mechanical, but not thermal, hypersensitivity up to 3 weeks in both sexes. When postinjury stimulation was given at a lower intensity (30°C) or at later time points (40°C at 1-3 days postcapsaicin), chronification of mechanical hypersensitivity occurred only in females. Similar chronification could be induced by a different postinjury stimulation modality (vibration of paw) or with a different injury model (plantar incision). Notably, the 40°C postinjury stimulation did not prolong capsaicin-induced inflammation in the hind paw, indicating that the prolonged mechanical hypersensitivity in these mice arises without clear evidence of ongoing injury, reflecting nociplastic pain. Although morphine and gabapentin effectively alleviated this persistent mechanical hypersensitivity in both sexes, sexually dimorphic mechanisms mediated the hypersensitivity. Specifically, ongoing afferent activity at the previously capsaicin-injected area was critical in females, whereas activated spinal microglia were crucial in males. These results demonstrate that postinjury stimulation of the injured area can trigger the transition from transient pain to nociplastic pain more readily in females, and sex-dependent mechanisms maintain the nociplastic pain state.


Assuntos
Dor Crônica , Hiperalgesia , Animais , Capsaicina/farmacologia , Feminino , Humanos , Hiperalgesia/etiologia , Masculino , Camundongos , Morfina , Medição da Dor
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA