RESUMO
Equal cell division relies upon astral microtubule-based centering mechanisms, yet how the interplay between mitotic entry, cortical force generation and long astral microtubules leads to symmetric cell division is not resolved. We report that a cortically located sperm aster displaying long astral microtubules that penetrate the whole zygote does not undergo centration until mitotic entry. At mitotic entry, we find that microtubule-based cortical pulling is lost. Quantitative measurements of cortical pulling and cytoplasmic pulling together with physical simulations suggested that a wavelike loss of cortical pulling at mitotic entry leads to aster centration based on cytoplasmic pulling. Cortical actin is lost from the cortex at mitotic entry coincident with a fall in cortical tension from â¼300pN/µm to â¼100pN/µm. Following the loss of cortical force generators at mitotic entry, long microtubule-based cytoplasmic pulling is sufficient to displace the aster towards the cell center. These data reveal how mitotic aster centration is coordinated with mitotic entry in chordate zygotes.
Assuntos
Sêmen , Fuso Acromático , Masculino , Humanos , Microtúbulos , Citoplasma , Divisão CelularRESUMO
During eukaryotic cell division a microtubule-based structure, the mitotic spindle, aligns and segregates chromosomes between daughter cells. Understanding how this cellular structure is assembled and coordinated in space and in time requires measuring microtubule dynamics and visualizing spindle assembly with high temporal and spatial resolution. Visualization is often achieved by the introduction and the detection of molecular probes and fluorescence microscopy. Microtubules and mitotic spindles are highly conserved across eukaryotes; however, several technical limitations have restricted these investigations to only a few species. The ability to monitor microtubule and chromosome choreography in a wide range of species is fundamental to reveal conserved mechanisms or unravel unconventional strategies that certain forms of life have developed to ensure faithful partitioning of chromosomes during cell division. Here, we describe a technique based on injection of purified proteins that enables the visualization of microtubules and chromosomes with a high contrast in several divergent marine embryos. We also provide analysis methods and tools to extract microtubule dynamics and monitor spindle assembly. These techniques can be adapted to a wide variety of species in order to measure microtubule dynamics and spindle assembly kinetics when genetic tools are not available or in parallel to the development of such techniques in non-model organisms.
Assuntos
Microtúbulos , Fuso Acromático , Fuso Acromático/metabolismo , Microtúbulos/metabolismo , Ciclo Celular , Divisão Celular , Cromossomos/metabolismo , Tubulina (Proteína)/metabolismo , MitoseRESUMO
Tissue morphogenesis results from a tight interplay between gene expression, biochemical signaling and mechanics. Although sequencing methods allow the generation of cell-resolved spatiotemporal maps of gene expression, creating similar maps of cell mechanics in three-dimensional (3D) developing tissues has remained a real challenge. Exploiting the foam-like arrangement of cells, we propose a robust end-to-end computational method called 'foambryo' to infer spatiotemporal atlases of cellular forces from fluorescence microscopy images of cell membranes. Our method generates precise 3D meshes of cells' geometry and successively predicts relative cell surface tensions and pressures. We validate it with 3D foam simulations, study its noise sensitivity and prove its biological relevance in mouse, ascidian and worm embryos. 3D force inference allows us to recover mechanical features identified previously, but also predicts new ones, unveiling potential new insights on the spatiotemporal regulation of cell mechanics in developing embryos. Our code is freely available and paves the way for unraveling the unknown mechanochemical feedbacks that control embryo and tissue morphogenesis.
Assuntos
Embrião de Mamíferos , Transdução de Sinais , Animais , Camundongos , Morfogênese , Membrana Celular , Microscopia de FluorescênciaRESUMO
The spindle assembly checkpoint (SAC) is a surveillance system that preserves genome integrity by delaying anaphase onset until all chromosomes are correctly attached to spindle microtubules. Recruitment of SAC proteins to unattached kinetochores generates an inhibitory signal that prolongs mitotic duration. Chordate embryos are atypical in that spindle defects do not delay mitotic progression during early development, implying that either the SAC is inactive or the cell-cycle target machinery is unresponsive. Here, we show that in embryos of the chordate Phallusia mammillata, the SAC delays mitotic progression from the 8th cleavage divisions. Unattached kinetochores are not recognized by the SAC machinery until the 7th cell cycle, when the SAC is acquired. After acquisition, SAC strength, which manifests as the degree of mitotic lengthening induced by spindle perturbations, is specific to different cell types and is modulated by cell size, showing similarity to SAC control in early Caenorhabditis elegans embryos. We conclude that SAC acquisition is a process that is likely specific to chordate embryos, while modulation of SAC efficiency in SAC proficient stages depends on cell fate and cell size, which is similar to non-chordate embryos.
Assuntos
Pontos de Checagem da Fase M do Ciclo Celular , Fuso Acromático , Animais , Fuso Acromático/metabolismo , Cinetocoros/metabolismo , Microtúbulos/metabolismo , Caenorhabditis elegans/metabolismo , Tamanho Celular , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismoRESUMO
Cell division orientation is thought to result from a competition between cell geometry and polarity domains controlling the position of the mitotic spindle during mitosis. Depending on the level of cell shape anisotropy or the strength of the polarity domain, one dominates the other and determines the orientation of the spindle. Whether and how such competition is also at work to determine unequal cell division (UCD), producing daughter cells of different size, remains unclear. Here, we show that cell geometry and polarity domains cooperate, rather than compete, in positioning the cleavage plane during UCDs in early ascidian embryos. We found that the UCDs and their orientation at the ascidian third cleavage rely on the spindle tilting in an anisotropic cell shape, and cortical polarity domains exerting different effects on spindle astral microtubules. By systematically varying mitotic cell shape, we could modulate the effect of attractive and repulsive polarity domains and consequently generate predicted daughter cell size asymmetries and position. We therefore propose that the spindle position during UCD is set by the combined activities of cell geometry and polarity domains, where cell geometry modulates the effect of cortical polarity domain(s).
Assuntos
Divisão Celular/fisiologia , Polaridade Celular/fisiologia , Forma Celular/fisiologia , Embrião não Mamífero/fisiologia , Desenvolvimento Embrionário/fisiologia , Urocordados/fisiologia , AnimaisRESUMO
In recent years, pollution of surface waters with xenobiotic compounds became an issue of concern in society and has been the object of numerous studies. Most of these xenobiotic compounds are man-made molecules and some of them are qualified as endocrine disrupting chemicals (EDCs) when they interfere with hormones actions. Several studies have investigated the teratogenic impacts of EDCs in vertebrates (including marine vertebrates). However, the impact of such EDCs on marine invertebrates is much debated and still largely obscure. In addition, DNA-altering genotoxicants can induce embryonic malformations. The goal of this study is to develop a reliable and effective test for assessing toxicity of chemicals using embryos of the ascidian (Phallusia mammillata) in order to find phenotypic signatures associated with xenobiotics. We evaluated embryonic malformations with high-content analysis of larval phenotypes by scoring several quantitative and qualitative morphometric endpoints on a single image of Phallusia tadpole larvae with semi-automated image analysis. Using this approach we screened different classes of toxicants including genotoxicants, known or suspected EDCs and nuclear receptors (NRs) ligands. The screen presented here reveals a specific phenotypic signature for ligands of retinoic acid receptor/retinoid X receptor. Analysis of larval morphology combined with DNA staining revealed that embryos with DNA aberrations displayed severe malformations affecting multiple aspects of embryonic development. In contrast EDCs exposure induced no or little DNA aberrations and affected mainly neural development. Therefore the ascidian embryo/larval assay presented here can allow to distinguish the type of teratogenicity induced by different classes of toxicants.
RESUMO
Functional approaches for studying embryonic development have greatly advanced thanks to the CRISPR-Cas9 gene editing technique. Previously practiced in just a few organisms, these knockout techniques are now widely applied. Here we describe simple techniques for applying the CRISPR-Cas9 system to study the development of the nerve cord in the ascidian Phallusia mammillata.
Assuntos
Sistemas CRISPR-Cas , Edição de Genes/métodos , Urocordados/embriologia , Urocordados/genética , Animais , Microinjeções , Urocordados/ultraestruturaRESUMO
Polar body (PB) formation is an extreme form of unequal cell division that occurs in oocytes due to the eccentric position of the small meiotic spindle near the oocyte cortex. Prior to PB formation, a chromatin-centered process causes the cortex overlying the meiotic chromosomes to become polarized. This polarized cortical subdomain marks the site where a cortical protrusion or outpocket forms at the oocyte surface creating the future PBs. Using ascidians, we observed that PB1 becomes tethered to the fertilized egg via PB2, indicating that the site of PB1 cytokinesis directed the precise site for PB2 emission. We therefore studied whether the midbody remnant left behind following PB1 emission was involved, together with the egg chromatin, in defining the precise cortical site for PB2 emission. During outpocketing of PB2 in ascidians, we discovered that a small structure around 1 µm in diameter protruded from the cortical outpocket that will form the future PB2, which we define as the "polar corps". As emission of PB2 progressed, this small polar corps became localized between PB2 and PB1 and appeared to link PB2 to PB1. We tested the hypothesis that this small polar corps on the surface of the forming PB2 outpocket was the midbody remnant from the previous round of PB1 cytokinesis. We had previously discovered that Plk1::Ven labeled midbody remnants in ascidian embryos. We therefore used Plk1::Ven to follow the dynamics of the PB1 midbody remnant during meiosis II. Plk1::Ven strongly labeled the small polar corps that formed on the surface of the cortical outpocket that created PB2. Following emission of PB2, this polar corps was rich in Plk1::Ven and linked PB2 to PB1. By labelling actin (with TRITC-Phalloidin) we also demonstrated that actin accumulates at the midbody remnant and also forms a cortical cap around the midbody remnant in meiosis II that prefigured the precise site of cortical outpocketing during PB2 emission. Phalloidin staining of actin and immunolabelling of anti-phospho aPKC during meiosis II in fertilized eggs that had PB1 removed suggested that the midbody remnant remained within the fertilized egg following emission of PB1. Dynamic imaging of microtubules labelled with Ens::3GFP, MAP7::GFP or EB3::3GFP showed that one pole of the second meiotic spindle was located near the midbody remnant while the other pole rotated away from the cortex during outpocketing. Finally, we report that failure of the second meiotic spindle to rotate can lead to the formation of two cortical outpockets at anaphase II, one above each set of chromatids. It is not known whether the midbody remnant of PB1 is involved in directing the precise location of PB2 since our data are correlative in ascidians. However, a review of the literature indicates that PB1 is tethered to the egg surface via PB2 in several species including members of the cnidarians, lophotrochozoa and echinoids, suggesting that the midbody remnant formed during PB1 emission may be involved in directing the precise site of PB2 emission throughout the invertebrates.
Assuntos
Meiose/fisiologia , Corpos Polares/fisiologia , Actinas/metabolismo , Animais , Bivalves/metabolismo , Bivalves/fisiologia , Cromatina/metabolismo , Cromatina/fisiologia , Cromossomos/metabolismo , Cromossomos/fisiologia , Citocinese/fisiologia , Oócitos/metabolismo , Oócitos/fisiologia , Corpos Polares/metabolismo , Fuso Acromático/metabolismo , Fuso Acromático/fisiologia , Urocordados/metabolismo , Urocordados/fisiologia , Zigoto/metabolismo , Zigoto/fisiologiaRESUMO
Global tissue tension anisotropy has been shown to trigger stereotypical cell division orientation by elongating mitotic cells along the main tension axis. Yet, how tissue tension elongates mitotic cells despite those cells undergoing mitotic rounding (MR) by globally upregulating cortical actomyosin tension remains unclear. We addressed this question by taking advantage of ascidian embryos, consisting of a small number of interphasic and mitotic blastomeres and displaying an invariant division pattern. We found that blastomeres undergo MR by locally relaxing cortical tension at their apex, thereby allowing extrinsic pulling forces from neighboring interphasic blastomeres to polarize their shape and thus division orientation. Consistently, interfering with extrinsic forces by reducing the contractility of interphasic blastomeres or disrupting the establishment of asynchronous mitotic domains leads to aberrant mitotic cell division orientations. Thus, apical relaxation during MR constitutes a key mechanism by which tissue tension anisotropy controls stereotypical cell division orientation.
Assuntos
Blastômeros/citologia , Forma Celular , Mitose , Estresse Mecânico , Animais , Modelos Teóricos , UrocordadosRESUMO
In eukaryotic cells, a spindle assembly checkpoint (SAC) ensures accurate chromosome segregation, by monitoring proper attachment of chromosomes to spindle microtubules and delaying mitotic progression if connections are erroneous or absent. The SAC is thought to be relaxed during early embryonic development. Here, we evaluate the checkpoint response to lack of kinetochore-spindle microtubule interactions in early embryos of diverse animal species. Our analysis shows that there are two classes of embryos, either proficient or deficient for SAC activation during cleavage. Sea urchins, mussels, and jellyfish embryos show a prolonged delay in mitotic progression in the absence of spindle microtubules from the first cleavage division, while ascidian and amphioxus embryos, like those of Xenopus and zebrafish, continue mitotic cycling without delay. SAC competence during early development shows no correlation with cell size, chromosome number, or kinetochore to cell volume ratio. We show that SAC proteins Mad1, Mad2, and Mps1 lack the ability to recognize unattached kinetochores in ascidian embryos, indicating that SAC signaling is not diluted but rather actively silenced during early chordate development.
Assuntos
Invertebrados/embriologia , Pontos de Checagem da Fase M do Ciclo Celular/fisiologia , Fuso Acromático/metabolismo , Animais , Pontos de Checagem do Ciclo Celular/fisiologia , Proteínas de Ciclo Celular/metabolismo , Segregação de Cromossomos/fisiologia , Embrião não Mamífero/metabolismo , Cinetocoros/metabolismo , Microtúbulos/metabolismo , Mitose/fisiologia , Nocodazol/farmacologia , Transdução de Sinais/fisiologiaRESUMO
Cells are arranged into species-specific patterns during early embryogenesis. Such cell division patterns are important since they often reflect the distribution of localized cortical factors from eggs/fertilized eggs to specific cells as well as the emergence of organismal form. However, it has proven difficult to reveal the mechanisms that underlie the emergence of cell positioning patterns that underlie embryonic shape, likely because a systems-level approach is required that integrates cell biological, genetic, developmental, and mechanical parameters. The choice of organism to address such questions is also important. Because ascidians display the most extreme form of invariant cleavage pattern among the metazoans, we have been analyzing the cell biological mechanisms that underpin three aspects of cell division (unequal cell division (UCD), oriented cell division (OCD), and asynchronous cell cycles) which affect the overall shape of the blastula-stage ascidian embryo composed of 64 cells. In ascidians, UCD creates two small cells at the 16-cell stage that in turn undergo two further successive rounds of UCD. Starting at the 16-cell stage, the cell cycle becomes asynchronous, whereby the vegetal half divides before the animal half, thus creating 24-, 32-, 44-, and then 64-cell stages. Perturbing either UCD or the alternate cell division rhythm perturbs cell position. We propose that dynamic cell shape changes propagate throughout the embryo via cell-cell contacts to create the ascidian-specific invariant cleavage pattern.
Assuntos
Padronização Corporal , Divisão Celular , Embrião não Mamífero/citologia , Embrião não Mamífero/embriologia , Urocordados/citologia , Urocordados/embriologia , Animais , FertilizaçãoRESUMO
The endocrine disruptor Bisphenol A (BPA), a widely employed molecule in plastics, has been shown to affect several biological processes in vertebrates, mostly via binding to nuclear receptors. Neurodevelopmental effects of BPA have been documented in vertebrates and linked to neurodevelopmental disorders, probably because some nuclear receptors are present in the vertebrate brain. Similarly, endocrine disruptors have been shown to affect neurodevelopment in marine invertebrates such as ascidians, mollusks or echinoderms, but whether invertebrate nuclear receptors are involved in the mode-of-action is largely unknown. In this study, we assessed the effect of BPA on larval brain development of the ascidian Phallusia mammillata. We found that BPA is toxic to P. mammillata embryos in a dose-dependent manner (EC50: 11.8µM; LC50: 21µM). Furthermore, micromolar doses of BPA impaired differentiation of the ascidian pigmented cells, by inhibiting otolith movement within the sensory vesicle. We further show that this phenotype is specific to other two bisphenols (BPE and BPF) over a bisphenyl (2,2 DPP). Because in vertebrates the estrogen-related receptor gamma (ERRγ) can bind bisphenols with high affinity but not bisphenyls, we tested whether the ascidian ERR participates in the neurodevelopmental phenotype induced by BPA. Interestingly, P. mammillata ERR is expressed in the larval brain, adjacent to the differentiating otolith. Furthermore, antagonists of vertebrate ERRs also inhibited the otolith movement but not pigmentation. Together our observations suggest that BPA may affect ascidian otolith differentiation by altering Pm-ERR activity whereas otolith pigmentation defects might be due to the known inhibitory effect of bisphenols on tyrosinase enzymatic activity.
Assuntos
Compostos Benzidrílicos/toxicidade , Encéfalo/citologia , Encéfalo/embriologia , Diferenciação Celular/efeitos dos fármacos , Organogênese , Fenóis/toxicidade , Pigmentação , Urocordados/citologia , Animais , Compostos Benzidrílicos/química , Movimento Celular/efeitos dos fármacos , Embrião não Mamífero/efeitos dos fármacos , Larva/efeitos dos fármacos , Larva/metabolismo , Organogênese/efeitos dos fármacos , Membrana dos Otólitos/citologia , Membrana dos Otólitos/efeitos dos fármacos , Fenóis/química , Pigmentação/efeitos dos fármacos , Receptores de Estrogênio/antagonistas & inibidores , Receptores de Estrogênio/metabolismo , Testes de Toxicidade , Urocordados/embriologia , Poluentes Químicos da Água/toxicidade , Receptor ERRalfa Relacionado ao EstrogênioRESUMO
Endocrine Disrupting Chemicals (EDCs) are molecules able to interfere with the vertebrate hormonal system in different ways, a major one being the modification of the activity of nuclear receptors (NRs). Several NRs are expressed in the vertebrate brain during embryonic development and these NRs are suspected to be responsible for the neurodevelopmental defects induced by exposure to EDCs in fishes or amphibians and to participate in several neurodevelopmental disorders observed in humans. Known EDCs exert toxicity not only on vertebrate forms of marine life but also on marine invertebrates. However, because hormonal systems of invertebrates are poorly understood, it is not clear whether the teratogenic effects of known EDCs are because of endocrine disruption. The most conserved actors of endocrine systems are the NRs which are present in all metazoan genomes but their functions in invertebrate organisms are still insufficiently characterized. EDCs like bisphenol A have recently been shown to affect neurodevelopment in marine invertebrate chordates called ascidians. Because such phenotypes can be mediated by NRs expressed in the ascidian embryo, we review all the information available about NRs expression during ascidian embryogenesis and discuss their possible involvement in the neurodevelopmental phenotypes induced by EDCs.
Assuntos
Disruptores Endócrinos/toxicidade , Sistema Nervoso , Neurotoxinas/toxicidade , Receptores Citoplasmáticos e Nucleares/metabolismo , Urocordados , Animais , Embrião não Mamífero/efeitos dos fármacos , Desenvolvimento Embrionário/efeitos dos fármacos , Modelos Biológicos , Sistema Nervoso/efeitos dos fármacos , Sistema Nervoso/embriologia , Sistema Nervoso/crescimento & desenvolvimento , Urocordados/efeitos dos fármacos , Urocordados/embriologia , Urocordados/crescimento & desenvolvimentoRESUMO
Phallusia mammillata has recently emerged as a new ascidian model. Its unique characteristics, including the optical transparency of eggs and embryos and efficient translation of exogenously introduced mRNA in eggs, make the Phallusia system suitable for fluorescent protein (FP)-based imaging approaches. In addition, genomic and transcriptomic resources are readily available for this ascidian species, facilitating functional gene studies. Microinjection is probably the most versatile technique for introducing exogenous molecules such as plasmids, mRNAs, and proteins into ascidian eggs/embryos. However, it is not practiced widely within the community; presumably, because the system is rather laborious to set up and it requires practice. Here, we describe in as much detail as possible two microinjection methods that we use daily in the laboratory: one based on an inverted microscope and the other on a stereomicroscope. Along the stepwise description of system setup and injection procedure, we provide practical tips in the hope that this chapter might be a useful guide for introducing or improving a microinjection setup.
Assuntos
Animais Geneticamente Modificados , Técnicas de Transferência de Genes , Microinjeções/métodos , RNA Mensageiro/administração & dosagem , Urocordados/genética , Animais , Animais Geneticamente Modificados/embriologia , Animais Geneticamente Modificados/genética , Animais Geneticamente Modificados/crescimento & desenvolvimento , Técnicas de Cultura Embrionária/instrumentação , Técnicas de Cultura Embrionária/métodos , Embrião não Mamífero/ultraestrutura , Feminino , Fertilização in vitro/instrumentação , Fertilização in vitro/métodos , Técnicas de Transferência de Genes/instrumentação , Larva , Masculino , Microinjeções/instrumentação , Microscopia/instrumentação , Óvulo , RNA Mensageiro/genética , Transgenes , Urocordados/embriologia , Urocordados/crescimento & desenvolvimentoRESUMO
Asymmetric positioning of the mitotic spindle is a fundamental process responsible for creating sibling cell size asymmetry; however, how the cortex causes the depolymerization of astral microtubules during asymmetric spindle positioning has remained elusive. Early ascidian embryos possess a large cortical subdomain of endoplasmic reticulum (ER) that causes asymmetric spindle positioning driving unequal cell division. Here we show that the microtubule depolymerase Kif2 localizes to this subdomain of cortical ER. Rapid live-cell imaging reveals that microtubules are less abundant in the subdomain of cortical ER. Inhibition of Kif2 function prevents the development of mitotic aster asymmetry and spindle pole movement towards the subdomain of cortical ER, whereas locally increasing microtubule depolymerization causes exaggerated asymmetric spindle positioning. This study shows that the microtubule depolymerase Kif2 is localized to a cortical subdomain of endoplasmic reticulum that is involved in asymmetric spindle positioning during unequal cell division.Early ascidian embryos have a cortical subdomain of endoplasmic reticulum (ER) that controls asymmetric spindle positioning driving unequal cell division. Here the authors show that the microtubule depolymerase Kif2 is localized to a cortical subdomain of the ER that is involved in asymmetric spindle positioning.
Assuntos
Retículo Endoplasmático/metabolismo , Cinesinas/metabolismo , Microtúbulos/metabolismo , Fuso Acromático/metabolismo , Urocordados/metabolismo , Animais , Divisão Celular Assimétrica , Ciona intestinalis/citologia , Ciona intestinalis/embriologia , Ciona intestinalis/metabolismo , Embrião não Mamífero/citologia , Embrião não Mamífero/embriologia , Embrião não Mamífero/metabolismo , Microscopia Confocal , Imagem com Lapso de Tempo/métodos , Urocordados/citologia , Urocordados/embriologiaRESUMO
Ascidians (tunicates; sea squirts) are marine animals which provide a source of diverse, bioactive natural products, and a model for toxicity screenings. Compounds isolated from ascidians comprise an approved anti-tumor drug and many others are potent drug leads. Furthermore, the use of invertebrate embryos for toxicological screening tests or analysis offers the possibility to image a large number of samples for high throughput screens. Ascidians are members of a sister clade to the vertebrates and make a vertebrate-like tadpole larva composed of less than 3000 cells in 18 hours. The neural complex of the ascidian larva is made of only 350 cells (of which 100 are neurons) and functional genomic studies have now uncovered numerous GRNs underpinning neural specification and differentiation. Numerous studies showed that brain formation in ascidians is sensitive to toxic insults especially from endocrine disruptors making them a suitable model to study neurodevelopmental defects. Modern techniques available for ascidians, including transgenic embryos where 3D time lapse imaging of GFPexpressing reporter constructs can be analyzed, now permit numerous end-points to be evaluated in order to test the specific mode of action of many compounds. This review summarizes the key evidence suggesting that ascidian embryos are a favorable embryological model to study neurodevelopmental toxicity of different compounds with molecular and cellular end-points. We predict that ascidians may become a significant source of marine blue biotechnologies in the 21st century.
Assuntos
Descoberta de Drogas/métodos , Avaliação Pré-Clínica de Medicamentos/métodos , Modelos Animais , Animais , Animais Geneticamente Modificados , Sistema Nervoso Central/efeitos dos fármacos , Embrião não Mamífero/efeitos dos fármacos , Testes de Toxicidade , Urocordados/efeitos dos fármacos , Urocordados/embriologia , Urocordados/genéticaRESUMO
The ascidian embryo is an ideal system to investigate how cell position is determined during embryogenesis. Using 3D timelapse imaging and computational methods we analyzed the planar cell divisions in ascidian early embryos and found that spindles in every cell tend to align at metaphase in the long length of the apical surface except in cells undergoing unequal cleavage. Furthermore, the invariant and conserved cleavage pattern of ascidian embryos was found to consist in alternate planar cell divisions between ectoderm and endomesoderm. In order to test the importance of alternate cell divisions we manipulated zygotic transcription induced by ß-catenin or downregulated wee1 activity, both of which abolish this cell cycle asynchrony. Crucially, abolishing cell cycle asynchrony consistently disrupted the spindle orienting mechanism underpinning the invariant cleavage pattern. Our results demonstrate how an evolutionary conserved cell cycle asynchrony maintains the invariant cleavage pattern driving morphogenesis of the ascidian blastula.
Assuntos
Divisão Celular , Fuso Acromático , Urocordados/embriologia , Animais , Ectoderma/citologia , Ectoderma/embriologia , Endoderma/citologia , Endoderma/embriologia , Imageamento Tridimensional , Mesoderma/citologia , Mesoderma/embriologia , Imagem com Lapso de TempoRESUMO
Ascidians belong to the tunicates, the sister group of vertebrates and are recognized model organisms in the field of embryonic development, regeneration and stem cells. ANISEED is the main information system in the field of ascidian developmental biology. This article reports the development of the system since its initial publication in 2010. Over the past five years, we refactored the system from an initial custom schema to an extended version of the Chado schema and redesigned all user and back end interfaces. This new architecture was used to improve and enrich the description of Ciona intestinalis embryonic development, based on an improved genome assembly and gene model set, refined functional gene annotation, and anatomical ontologies, and a new collection of full ORF cDNAs. The genomes of nine ascidian species have been sequenced since the release of the C. intestinalis genome. In ANISEED 2015, all nine new ascidian species can be explored via dedicated genome browsers, and searched by Blast. In addition, ANISEED provides full functional gene annotation, anatomical ontologies and some gene expression data for the six species with highest quality genomes. ANISEED is publicly available at: http://www.aniseed.cnrs.fr.
Assuntos
Ciona intestinalis/embriologia , Ciona intestinalis/genética , Bases de Dados Genéticas , Urocordados/embriologia , Urocordados/genética , Animais , Desenvolvimento Embrionário/genética , Genômica , Urocordados/anatomia & histologiaRESUMO
BACKGROUND: Establishment and maintenance of cell polarity is critical for normal embryonic development. Previously, it was thought that the echinoderm embryo remained relatively unpolarized until the first asymmetric division at the 16-cell stage. Here, we analyzed roles of the cell polarity regulators, the PAR complex proteins, and how their disruption in early development affects later developmental milestones. RESULTS: We found that PAR6, aPKC, and CDC42 localize to the apical cortex as early as the 2-cell stage and that this localization is retained through the gastrula stage. Of interest, PAR1 also colocalizes with these apical markers through the gastrula stage. Additionally, PAR1 was found to be in complex with aPKC, but not PAR6. PAR6, aPKC, and CDC42 are anchored in the cortical actin cytoskeleton by assembled myosin. Furthermore, assembled myosin was found to be necessary to maintain proper PAR6 localization through subsequent cleavage divisions. Interference with myosin assembly prevented the embryos from reaching the blastula stage, while transient disruptions of either actin or microtubules did not have this effect. CONCLUSIONS: These observations suggest that disruptions of the polarity in the early embryo can have a significant impact on the ability of the embryo to reach later critical stages in development.
Assuntos
Polaridade Celular/fisiologia , Desenvolvimento Embrionário/fisiologia , Ouriços-do-Mar/embriologia , Actinas/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Animais , Proteínas de Ciclo Celular/metabolismo , Miosinas/metabolismo , Proteína Quinase C/metabolismo , Ouriços-do-Mar/metabolismoRESUMO
During embryonic development and maternal meiotic maturation, positioning of the mitotic/meiotic spindle is subject to control mechanisms that meet the needs of the particular cell type. Here we review the methods, molecular tools, and the ascidian model we use to study three different ways in which centrosomes or spindles are positioned in three different cellular contexts. First, we review unequal cleavage in the ascidian germ lineage. In the germ cell precursors, a large macromolecular structure termed the centrosome-attracting body causes three successive rounds of unequal cleavage from the 8- to the 64-cell stage. Next, we discuss spindle positioning underlying the invariant cleavage pattern. Ascidian embryos display an invariant cleavage pattern whereby the mitotic spindle aligns in a predetermined orientation in every blastomere up to the gastrula stage (composed of 112 cells). Finally, we review methods and approaches to study meiotic spindle positioning in eggs.