Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Sci Total Environ ; 935: 173445, 2024 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-38782280

RESUMO

Intensive agriculture can impair river water quality. Soil quality monitoring has been used to measure the effect of land use intensification on water quality at a point and field scales but not at the catchment scale. Other farm scale land use pressures, like stocking rate and the value of land, which relate to land use intensity are now publicly available, nationally. We therefore tested whether point scale soil quality measures, together with newly available farm scale land use pressures (land valuation and stocking rate) and existing catchment and climatic characteristics could help predict the behaviour of water quality data across 192 catchments in New Zealand. We used a generalised additive model to make predictions of the change in nitrogen fractions (r2 = 0.65-0.71), phosphorus fractions (r2 = 0.51-0.70), clarity and turbidity (r2 = 0.42-0.46), and E. coli (r2 = 0.35) over 15 years. The state and trend of water quality was strongly related to a refined farm scale land use classification, and to catchment and climatic characteristics (e.g. slope, elevation, and rainfall). Relationships with point scale soil quality measures and the land use pressures were weak. The weak relationship with land use pressures may be caused by using a single snapshot in time (2022), which cannot account for lag times in water quality response but leaves room for additional temporal data to improve predictive power. The weak relationship to soil quality measures was probably caused by limited data points (n = 667 sites) that were unrepresentative of land use, and areas of catchment subject to processes like runoff or leaching. While national soil quality measures might be useful for evaluating environmental risk at the field or farm scale, without a large increase in sampling, they were not relevant at the catchment scale. Additional analyses should be performed to determine how many samples would be needed to detect a change using an environmentally focused soil test that can guide water quality management.

2.
Sci Data ; 11(1): 17, 2024 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-38167392

RESUMO

Numerous drivers such as farming practices, erosion, land-use change, and soil biogeochemical background, determine the global spatial distribution of phosphorus (P) in agricultural soils. Here, we revised an approach published earlier (called here GPASOIL-v0), in which several global datasets describing these drivers were combined with a process model for soil P dynamics to reconstruct the past and current distribution of P in cropland and grassland soils. The objective of the present update, called GPASOIL-v1, is to incorporate recent advances in process understanding about soil inorganic P dynamics, in datasets to describe the different drivers, and in regional soil P measurements for benchmarking. We trace the impact of the update on the reconstructed soil P. After the update we estimate a global averaged inorganic labile P of 187 kgP ha-1 for cropland and 91 kgP ha-1 for grassland in 2018 for the top 0-0.3 m soil layer, but these values are sensitive to the mineralization rates chosen for the organic P pools. Uncertainty in the driver estimates lead to coefficients of variation of 0.22 and 0.54 for cropland and grassland, respectively. This work makes the methods for simulating the agricultural soil P maps more transparent and reproducible than previous estimates, and increases the confidence in the new estimates, while the evaluation against regional dataset still suggests rooms for further improvement.

3.
J Environ Qual ; 52(2): 355-366, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36481970

RESUMO

Shallow subsurface pathways dominate dissolved reactive phosphorus (DRP) losses in grassland soils that are: poorly drained, shallow, or have a perched water table in wetter months causing saturation-excess runoff. Saturated conditions can lead to anoxia, which can accelerate phosphorus (P) loss. Two scales of investigation were utilized in this study. First, at the field scale, soil cores were extracted to 2.5 m, subdivided and samples extracted using water extractable P (WEP) and sodium-bicarbonate-dithionite extractable P (NaBD-P). Second, at the laboratory scale, detailed incubation studies using field-moist grassland topsoils from sites in Ireland and New Zealand examined the kinetics of WEP under anoxic (WEPanox ) and oxic (WEPox ) conditions with imposed temperature and soil P fertilizer input treatments. Results from soil-core samples showed that redox-sensitive NaBD-P concentrations were depleted where artificial drainage lines were installed (100 cm deep), but WEP concentrations available to shallow flow were enriched in topsoil. The laboratory scale incubation experiment investigated the influence of temperature (3 vs. 18 °C), anoxia (designed to simulate saturation following a rainfall event), and superphosphate fertilizer (10 to 60 kg P ha-1  yr-1 ) on WEP concentrations over 24 h in three grassland topsoils (clay, silt, and sandy loam textures). Concentrations increased with fertilizer rate, temperature, and-in two soils-anoxic conditions. This was commensurate with nitrate (NO3 - ) depletion and the reductive dissolution of iron and manganese. The release of P during anoxia was complete within 24 h. The results highlighted late winter to spring as the riskiest period for topsoil P losses in shallow subsurface flow due to wet soil conditions, increasing temperatures, and low soil NO3 - concentrations. This knowledge highlights the necessity to consider and refine tests used to assess topsoil P loss risk, where in the landscape P losses are likely, and what strategies can be used to mitigate losses.


Assuntos
Fósforo , Solo , Fertilizantes/análise , Pradaria , Cinética , Agricultura
4.
J Environ Qual ; 50(5): 1207-1219, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34155644

RESUMO

In soils with a fragipan or poor permeability, water may remain in a soil profile long enough to make it anoxic and reductive. The reductive dissolution of iron (Fe)- and manganese (Mn)-oxides can release associated phosphorus (P). Therefore, the dissolved P would be vulnerable to subsurface flow and could contaminate nearby streams. It was hypothesized that single rainfall events could cause subsurface P concentrations to increase via reductive dissolution in wet winter-spring conditions. Also, dissolution-being microbially mediated-would be buffered by the presence of nitrate (NO3 - ), which is preferred as an electron acceptor over Fe and Mn in microbial reactions. Unsaturated zone monitoring occurred from May to September in 2017 and 2019, using Teflon suction cups below the surface of a grassland soil in New Zealand. Events in July and August in 2017 and 2019 resulted in reducing conditions [Fe(III)/sulfate-reducing] and up to 77 and 96% greater P and Fe release, respectively. In an additional experiment in 2019, 100 mm of flood irrigation was applied, and 10 mg NO3 - -N + carbon was injected into half the cups at the site. The other cups received no N. Cups treated with N yielded up to 45% total dissolved P and 21% less Fe than the no-N cups. A laboratory incubation of soils from the site confirmed that NO3 - inhibited P release. This effect may act to decrease the amount of P lost in subsurface flow in systems regularly fertilized with N but should not be relied on as a method to mitigate P losses.


Assuntos
Fósforo , Solo , Compostos Férricos , Ferro , Óxidos , Solubilidade
5.
J Environ Qual ; 50(2): 287-311, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33491241

RESUMO

Phosphorus (P) pollution of surface waters remains a challenge for protecting and improving water quality. Central to the challenge is understanding what regulates P concentrations in streams. This quantitative review synthesizes the literature on a major control of P concentrations in streams at baseflow-the sediment P buffer-to better understand streamwater-sediment P interactions. We conducted a global meta-analysis of sediment equilibrium phosphate concentrations at net zero sorption (EPC0 ), which is the dissolved reactive P (DRP) concentration toward which sediments buffer solution DRP. Our analysis of 45 studies and >900 paired observations of DRP and EPC0 showed that sediments often have potential to remove or release P to the streamwater (83% of observations), meaning that "equilibrium" between sediment and streamwater is rare. This potential for P exchange is moderated by sediment and stream characteristics, including sorption affinity, stream pH, exchangeable P concentration, and particle sizes. The potential for sediments to modify streamwater DRP concentrations is often not realized owing to other factors (e.g., hydrologic interactions). Sediment surface chemistry, hyporheic exchange, and biota can also influence the potential exchange of P between sediments and the streamwater. Methodological choices significantly influenced EPC0 determination and thus the estimated potential for P exchange; we therefore discuss how to measure and report EPC0 to best suit research objectives and aid in interstudy comparison. Our results enhance understanding of the sediment P buffer and inform how EPC0 can be effectively applied to improve management of aquatic P pollution and eutrophication.


Assuntos
Rios , Poluentes Químicos da Água , Eutrofização , Sedimentos Geológicos , Fósforo/análise , Poluentes Químicos da Água/análise , Qualidade da Água
6.
Plants (Basel) ; 9(9)2020 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-32932934

RESUMO

Rhizosphere processes play a critical role in phosphorus (P) acquisition by plants and microbes, especially under P-limited conditions. Here, we investigated the impacts of nutrient addition and plant species on plant growth, rhizosphere processes, and soil P dynamics. In a glasshouse experiment, blue lupin (Lupinus angustifolius), white clover (Trifolium repens L.), perennial ryegrass (Lolium perenne L.), and wheat (Triticum aestivum L.) were grown in a low-P pasture soil for 8 weeks with and without the single and combined addition of P (33 mg kg-1) and nitrogen (200 mg kg-1). Phosphorus addition increased plant biomass and total P content across plant species, as well as microbial biomass P in white clover and ryegrass. Alkaline phosphatase activity was higher for blue lupin. Legumes showed higher concentrations of organic anions compared to grasses. After P addition, the concentrations of organic anions increased by 11-,10-, 5-, and 2-fold in the rhizospheres of blue lupin, white clover, wheat, and ryegrass, respectively. Despite the differences in their chemical availability (as assessed by P fractionation), moderately labile inorganic P and stable organic P were the most depleted fractions by the four plant species. Inorganic P fractions were depleted similarly between the four plant species, while blue lupin exhibited a strong depletion of stable organic P. Our findings suggest that organic anions were not related to the acquisition of inorganic P for legumes and grasses. At the same time, alkaline phosphatase activity was associated with the mobilization of stable organic P for blue lupin.

7.
Environ Sci Technol ; 53(16): 9439-9452, 2019 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-31368301

RESUMO

Quantifying environmental changes relative to ecosystem reference conditions (baseline or natural states) can inform assessment of anthropogenic impacts and the development of restoration objectives and targets. We developed statistical models to predict current and reference concentrations of total nitrogen (TN) and total phosphorus (TP) in surface waters for a nationally representative sample of ≥1033 New Zealand lakes. The lake-specific nutrient concentrations reflected variation in factors including anthropogenic nutrient loads, hydrology, geology, elevation, climate, and lake and catchment morphology. Changes between reference and current concentrations were expressed to quantify the magnitude of anthropogenic eutrophication. Overall, there was a clear increase in lake trophic status, with the most common trophic status being oligotrophic under a reference state and mesotrophic under current conditions. The magnitude of departure from reference state varied considerably within the sample; however, on average, the mean TN concentration approximately doubled between reference and current states, whereas the mean TP concentration increased approximately 4-fold. This study quantified the extent of water quality degradation across lake types at a national scale, thereby informing ecological restoration objectives and the potential to reduce anthropogenic nutrient loads, while also providing a modeling framework that can be applied to lakes elsewhere.


Assuntos
Ecossistema , Lagos , China , Monitoramento Ambiental , Eutrofização , Nova Zelândia , Nitrogênio , Fósforo
8.
Sci Total Environ ; 649: 90-98, 2019 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-30172137

RESUMO

Despite greater emphasis on holistic phosphorus (P) management, current nutrient advice delivered at farm-scale still focuses almost exclusively on agricultural production. This limits our ability to address national and international strategies for the delivery of multiple ecosystem services (ES). Currently there is no operational framework in place to manage P fertility for multiple ES delivery and to identify the costs of potentially sacrificing crop yield and/or quality. As soil P fertility plays a central role in ES delivery, we argue that soil test phosphorus (STP) concentration provides a suitable common unit of measure by which delivering multiple ES can be economically valued relative to maximum potential yield, in $ ha-1 yr-1 units. This value can then be traded, or payments made against one another, at spatio-temporal scales relevant for farmer and national policy objectives. Implementation of this framework into current P fertility management strategies would allow for the integration and interaction of different stakeholder interests in ES delivery on-farm and in the wider landscape. Further progress in biophysical modeling of soil P dynamics is needed to inform its adoption across diverse landscapes.


Assuntos
Agricultura/métodos , Ecossistema , Fertilizantes/análise , Fósforo/administração & dosagem , Solo/química , Produção Agrícola/métodos
9.
Sci Total Environ ; 656: 852-861, 2019 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-30530153

RESUMO

Phosphorus is an essential part of the world food web and a non-substitutable nutrient in all biological systems. Losses of phosphorus occur along the food-supply chain and cause environmental degradation and eutrophication. A key global challenge is to meet rising worldwide food demand while protecting water and environmental quality, and seeking to manage uncertainty around potential future phosphorus price or supply shocks. This paper presents a stakeholder-generated conceptual model of potential transformative change for implementing phosphorus sustainability on the island of Ireland via an 'All-Island Phosphorus Sustainability' workshop. Key transition pathways identified by stakeholders included: incentivising phosphorus recovery, developing collaborative networks to facilitate change, developing markets and value chains for recovered products; implementing data-informed practices on-farm to prevent losses and increase efficiencies, and harmonisation of technologies with end-user needs. A comparable model was previously produced for the North American region. We describe consensus and differences around key priorities between the two regions' conceptual models, and assess how the model produced for the island of Ireland can effect system-wide change and policy moving forward. Many of the transitional pathways and future aspirations presented in both models resonate globally and are highly pertinent to other jurisdictions.

10.
Environ Sci Technol ; 52(21): 11995-12009, 2018 11 06.
Artigo em Inglês | MEDLINE | ID: mdl-30247882

RESUMO

Judicious phosphorus (P) management is a global grand challenge and critical to achieving and maintaining water quality objectives while maintaining food production. The management of point sources has been successful in lowering P inputs to aquatic environments, but more difficult is reducing P discharges associated with diffuse sources, such as nonpoint runoff from agriculture and urban landscapes, as well as P accumulated in soils and sediments. Strategies for effective diffuse-P management are imperative. Many options are currently available, and the most cost-effective and practical choice depends on the local situation. This critical review describes how the metrics of P quantity in kg ha-1 yr-1 and P form can influence decision-making and implementation of diffuse-P management strategies. Quantifying the total available pool of P, and its form, in a system is necessary to inform effective decision-making. The review draws upon a number of " current practice" case studies that span agriculture, cities, and aquatic sectors. These diverse examples from around the world highlight different diffuse-P management approaches, delivered at the source in the catchment watershed or at the aquatic sink. They underscore workable options for achieving water quality improvement and wider P sustainability. The diffuse-P management options discussed in this critical review are transferable to other jurisdictions at the global scale. We demonstrate that P quantity is typically highest and most concentrated at the source, particularly at farm scale. The most cost-effective and practically implementable diffuse-P management options are, therefore, to reduce P use, conserve P, and mitigate P loss at the source. Sequestering and removing P from aquatic sinks involves increasing cost, but is sometimes the most effective choice. Recovery of diffuse-P, while expensive, offers opportunity for the circular economy.


Assuntos
Agricultura , Fósforo , Solo , Qualidade da Água
11.
Ambio ; 47(6): 657-670, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-29397547

RESUMO

Winter manure application elevates nutrient losses and impairment of water quality as compared to manure applications in other seasons. In conjunction with reviewing global distribution of animal densities, we reviewed worldwide mandatory regulations and voluntary guidelines on efforts to reduce off-site nutrient losses associated with winter manure applications. Most of the developed countries implement regulations or guidelines to restrict winter manure application, which range from a regulative ban to guidelines based upon weather and field management conditions. In contrast, developing countries lack such official directives, despite an increasing animal production industry and concern over water quality. An analysis of five case studies reveals that directives are derived from a common rationale to reduce off-site manure nutrient losses, but they are also affected by local socio-economic and biophysical considerations. Successful programs combine site-specific management strategies along with expansion of manure storage to offer farmers greater flexibility in winter manure management.


Assuntos
Agricultura , Esterco , Animais , Regulamentação Governamental , Guias como Assunto , Nitrogênio , Fósforo , Estações do Ano , Qualidade da Água
12.
J Environ Qual ; 46(2): 295-301, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-28380551

RESUMO

Climate change will likely increase the growing season, temperatures, and ratio of nitrogen (N) to phosphorus (P) loss from land to water. However, it is unknown how these factors influence P concentrations in streams. We sought to evaluate differences in biotic and abiotic processes affecting stream sediment P dynamics under different temperature and N-enrichment regimes. Three sediments of varying P composition and sorption characteristics were placed into a fluvarium. Synthetic runoff water, with or without added N, was added to the flume's reservoir, and the solution was maintained at 19 or 26°C. Water and sediment samples were taken with time since runoff was introduced. The rate and magnitude of P uptake by sediment was greater at 19°C compared with 26°C, and also when N was added compared with no N added. Analysis of sediment samples indicated that P uptake via abiotic processes was greater at 19 than at 26°C. The addition of N stimulated P uptake by the microbial biomass at 19°C, but microbial uptake was potentially inhibited at 26°C. Because microbial biomass is a temporary store of P, these data suggest that more P may be available with increasing temperatures during the growing season, especially under baseflow, implying that strategies to mitigate P losses from land to water should be strengthened to prevent potential water quality impairment.


Assuntos
Nitrogênio/química , Fósforo/química , Sedimentos Geológicos , Rios , Temperatura
13.
J Environ Qual ; 44(2): 545-51, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26023973

RESUMO

With the installation of artificial drainage and large inputs of lime and fertilizer, dairy farming can be profitable on marginal land. We hypothesized that this will lead to large phosphorus (P) losses and potential surface water impairment if the soil has little capacity to sorb added P. Phosphorous was measured in drainage from three "marginal" soils used for dairying: an Organic soil that had been developed out of scrub for 2 yr and used for winter forage cropping, a Podzol that had been developed into pasture for 10 yr, and an intergrade soil that had been in pasture for 2 yr. Over 18 mo, drainage was similar among all sites (521-574 mm), but the load leached to 35-cm depth from the Organic soil was 87 kg P ha (∼89% of fertilizer-P added); loads were 1.7 and 9.0 kg ha from the Podzol and intergrade soils, respectively. Soil sampling to 100 cm showed that added P leached throughout the Organic soil profile but was stratified and enriched in the top 15 cm of the Podzol. Poor P sorption capacity (<5%) in the Organic soil, measured as anion storage capacity, and tillage (causing mineralization and P release) in the Organic and intergrade soils were thought to be the main causes of high P loss. It is doubtful that strategies would successfully mitigate these losses to an environmentally acceptable level. However, anion storage capacity could be used to identify marginal soils with high potential for P loss for the purpose of managing risk.

14.
J Environ Qual ; 43(4): 1370-80, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25603084

RESUMO

Many factors affect the magnitude of nutrient losses from dairy farm systems. Bayesian Networks (BNs) are an alternative to conventional modeling that can evaluate complex multifactor problems using forward and backward reasoning. A BN of annual total phosphorus (TP) exports was developed for a hypothetical dairy farm in the south Otago region of New Zealand and was used to investigate and integrate the effects of different management options under contrasting rainfall and drainage regimes. Published literature was consulted to quantify the relationships that underpin the BN, with preference given to data and relationships derived from the Otago region. In its default state, the BN estimated loads of 0.34 ± 0.42 kg TP ha for overland flow and 0.30 ± 0.19 kg TP ha for subsurface flow, which are in line with reported TP losses in overland flow (0-1.1 kg TP ha) and in drainage (0.15-2.2 kg TP ha). Site attributes that cannot be managed, like annual rainfall and the average slope of the farm, were found to affect the loads of TP lost from dairy farms. The greatest loads (13.4 kg TP ha) were predicted to occur with above-average annual rainfall (970 mm), where irrigation of farm dairy effluent was managed poorly, and where Olsen P concentrations were above pasture requirements (60 mg kg). Most of this loading was attributed to contributions from overland flow. This study demonstrates the value of using a BN to understand the complex interactions between site variables affecting P loss and their relative importance.

15.
J Environ Qual ; 43(5): 1635-43, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25603249

RESUMO

Phosphorus (P) loss from land can impair surface water quality. Aluminum sulfate (alum)-treated, compared with untreated, manure or slurry decreases P loss when applied to land; our hypothesis was that alum may also decrease P loss when directly applied to grassland grazed by dairy cows. A rainfall simulation showed that alum decreased mean concentrations of filterable reactive P (FRP) by 25 to 70% and total P (TP) by 20 to 40%, depending on soil P, Al, and Fe concentration and alum application rate. Using these factors, we predicted that FRP losses would be significantly less from alum-treated grasslands than from untreated grasslands for 70 to 96 d. A 14-mo field trial compared runoff P losses from plots that received 0, 25, and 50 kg Al ha applied within a week of grazing by dairy cattle in spring. Runoff-weighted concentrations (and loads) of FRP and TP decreased in alum-treated plots by 47 to 52% and 25 to 34%, respectively. At US$157 to US$944 kg P mitigated, cost-effectiveness was estimated as medium to low compared with existing strategies for mitigating P loss in dairy farms but could be improved if applied to critical source areas of P loss. However, additional work, such as determining the need for repeat applications, is required before alum can be recommended to decrease P losses from grazed grassland.

16.
J Environ Qual ; 41(3): 680-93, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22565250

RESUMO

The loss of phosphorus (P) from land to water is detrimental to surface water quality in many parts of New Zealand and Australia. Farming, especially pasture-based dairying, can be a source of P loss, but preventing it requires a range of fully costed strategies because little or no subsidies are available and the effectiveness of mitigation strategies varies with different farm management systems, topography, stream density, and climate. This paper reviews the cost-effectiveness of mitigation strategies for New Zealand and Australian dairy farms, grouping strategies into (i) management (e.g., decreasing soil test P, fencing streams off from stock, or applying low-water-soluble P fertilizers), (ii) amendments (e.g., alum or red mud [Bauxite residue]), and (iii) edge-of-field mitigations (e.g., natural or constructed wetlands). In general, on-farm management strategies were the most cost-effective way of mitigating P exports (cost range, $0 to $200 per kg P conserved). Amendments, added to tile drains or directly to surface soil, were often constrained by supply or were labor intensive. Of the amendments examined, red mud was cost effective where cost was offset by improved soil physical properties. Edge-of-field strategies, which remove P from runoff (i.e., wetlands) or prevent runoff (i.e., irrigation runoff recycling systems), were generally the least cost effective, but their benefits in terms of improved overall resource efficiency, especially in times of drought, or their effect on other contaminants like N need to be considered. By presenting a wide range of fully costed strategies, and understanding their mechanisms, a farmer or farm advisor is able to choose those that suit their farm and maintain profitability. Further work should examine the potential for targeting strategies to areas that lose the most P in time and space to maximize the cost-effectiveness of mitigation strategies, quantify the benefits of multiple strategies, and identify changes to land use that optimize overall dairy production, but minimize catchment scale, as versus farm scale, nutrient exports.


Assuntos
Indústria de Laticínios , Fósforo/química , Poluentes Químicos da Água/química , Animais , Austrália , Bovinos , Análise Custo-Benefício , Nova Zelândia , Fósforo/metabolismo , Poluentes Químicos da Água/economia
17.
Curr Opin Biotechnol ; 23(6): 860-5, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-22464284

RESUMO

Phosphorus loss from land, due to agricultural intensification, can impair water quality. The quantity lost is a function of runoff and availability, which is affected by inputs and the ability of the soil to retain P. Losses are exacerbated if surface runoff or drainage occurs soon after P inputs (e.g. fertiliser and/or manure and dung). Strategies to mitigate P losses depend on the farming system. The first step is to maintain a farm P balance (inputs-outputs) close to zero and the agronomic optimum. The next step is to use mitigation strategies in areas that lose the most P, but occupy little of the farm or catchment's area. Focusing on these areas, termed critical source areas, is more cost-effective than farm or catchment-wide strategies. However, the worry is that mitigation strategies may not keep pace with losses due to increasing intensification. Therefore, a proactive approach is needed that identifies areas resilient to P inputs and unlikely to lose P if land use is intensified.


Assuntos
Fósforo/análise , Fósforo/provisão & distribuição , Solo/química , Agricultura/métodos , Fertilizantes , Esterco , Abastecimento de Água/análise
18.
J Environ Qual ; 38(5): 1968-80, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-19704140

RESUMO

Quantifying and managing diffuse P losses from small catchments or at the farm scale requires detailed knowledge of farming practices and their interaction with catchment processes. However, detailed knowledge may not be available and hence modeling is required. This paper demonstrates two approaches to developing tools that assist P losses from New Zealand or Australian dairy farms. The first is largely empirical and separates sources of P within a paddock into soil, fertilizer, dung, and treading impacts (including damage to grazed pasture). This information is combined with expert knowledge of hydrological processes and potential point sources (e.g., stream crossings) to create a deterministic model that can be used to evaluate the most cost and labor efficient method of mitigating P losses. For instance, in one example, 45% of annual P lost was attributed to the application of superphosphate just before a runoff event for which a mitigation strategy could be to use a less water soluble P fertilizer. The second approach uses a combination of interviews, expert knowledge and relationships to develop a Bayesian Network that describes P exports. The knowledge integration process helped stakeholders develop a comprehensive understanding of the problem. The Network, presented in the form of a "cause and effect", diagram provided a simple, visual representation of current knowledge that could be easily applied to individual circumstances and isolate factors having the greatest influence on P loss. Both approaches demonstrate that modeling P losses and mitigation strategies does not have to cover every process or permutation and that a degree of uncertainty can be handled to create a working model of P losses at a farm or small catchment scale.


Assuntos
Fósforo/análise , Água/química , Teorema de Bayes , Indústria de Laticínios , Monitoramento Ambiental , Modelos Teóricos , Nova Zelândia , Fósforo/química , Poluição da Água/prevenção & controle
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA