Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Toxicol Sci ; 154(2): 341-353, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27605419

RESUMO

Sulfur mustard (bis 2-chloroethyl ethyl sulfide, SM) is a powerful bi-functional vesicating chemical warfare agent. SM tissue injury is partially mediated by the overproduction of reactive oxygen species resulting in oxidative stress. We hypothesized that using a catalytic antioxidant (AEOL 10150) to alleviate oxidative stress and secondary inflammation following exposure to SM would attenuate the toxic effects of SM inhalation. Adult male rats were intubated and exposed to SM (1.4 mg/kg), a dose that produces an LD50 at approximately 24 h. Rats were randomized and treated via subcutaneous injection with either sterile PBS or AEOL 10150 (5 mg/kg, sc, every 4 h) beginning 1 h post-SM exposure. Rats were euthanized between 6 and 48 h after exposure to SM and survival and markers of injury were determined. Catalytic antioxidant treatment improved survival after SM inhalation in a dose-dependent manner, up to 52% over SM PBS at 48 h post-exposure. This improvement was sustained for at least 72 h after SM exposure when treatments were stopped after 48 h. Non-invasive monitoring throughout the duration of the studies also revealed blood oxygen saturations were improved by 10% and clinical scores were reduced by 57% after SM exposure in the catalytic antioxidant treatment group. Tissue analysis showed catalytic antioxidant therapy was able to decrease airway cast formation by 69% at 48 h post-exposure. To investigate antioxidant induced changes at the peak of injury, several biomarkers of oxidative stress and inflammation were evaluated at 24 h post-exposure. AEOL 10150 attenuated SM-mediated lung lipid oxidation, nitrosative stress and many proinflammatory cytokines. The findings indicate that catalytic antioxidants may be useful medical countermeasure against inhaled SM exposure.


Assuntos
Antídotos/farmacologia , Antioxidantes/farmacologia , Substâncias para a Guerra Química/toxicidade , Lesão Pulmonar/prevenção & controle , Pulmão/efeitos dos fármacos , Metaloporfirinas/farmacologia , Gás de Mostarda/toxicidade , Estresse Oxidativo/efeitos dos fármacos , Pneumonia/prevenção & controle , Animais , Citocinas/metabolismo , Relação Dose-Resposta a Droga , Mediadores da Inflamação/metabolismo , Exposição por Inalação , Pulmão/metabolismo , Pulmão/patologia , Lesão Pulmonar/induzido quimicamente , Lesão Pulmonar/metabolismo , Lesão Pulmonar/patologia , Masculino , Pneumonia/induzido quimicamente , Pneumonia/metabolismo , Pneumonia/patologia , Ratos Sprague-Dawley , Espécies Reativas de Oxigênio/metabolismo , Fatores de Tempo
2.
Biochem Pharmacol ; 100: 1-11, 2016 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-26476351

RESUMO

The continuing horrors of military conflicts and terrorism often involve the use of chemical warfare agents (CWAs) and toxic industrial chemicals (TICs). Many CWA and TIC exposures are difficult to treat due to the danger they pose to first responders and their rapid onset that can produce death shortly after exposure. While the specific mechanism(s) of toxicity of these agents are diverse, many are associated either directly or indirectly with increased oxidative stress in affected tissues. This has led to the exploration of various antioxidants as potential medical countermeasures for CWA/TIC exposures. Studies have been performed across a wide array of agents, model organisms, exposure systems, and antioxidants, looking at an almost equally diverse set of endpoints. Attempts at treating CWAs/TICs with antioxidants have met with mixed results, ranging from no effect to nearly complete protection. The aim of this commentary is to summarize the literature in each category for evidence of oxidative stress and antioxidant efficacy against CWAs and TICs. While there is great disparity in the data concerning methods, models, and remedies, the outlook on antioxidants as medical countermeasures for CWA/TIC management appears promising.


Assuntos
Antioxidantes/uso terapêutico , Substâncias para a Guerra Química/toxicidade , Exposição Ambiental/efeitos adversos , Resíduos Industriais/efeitos adversos , Exposição à Guerra/efeitos adversos , Substâncias para a Guerra Química/metabolismo , Exposição Ambiental/prevenção & controle , Humanos , Resíduos Industriais/prevenção & controle , Estresse Oxidativo/efeitos dos fármacos , Estresse Oxidativo/fisiologia , Exposição à Guerra/prevenção & controle
3.
Am J Respir Cell Mol Biol ; 53(2): 193-205, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25490247

RESUMO

Thiocyanate (SCN) is used by the innate immune system, but less is known about its impact on inflammation and oxidative stress. Granulocytes oxidize SCN to evolve the bactericidal hypothiocyanous acid, which we previously demonstrated is metabolized by mammalian, but not bacterial, thioredoxin reductase (TrxR). There is also evidence that SCN is dysregulated in cystic fibrosis (CF), a disease marked by chronic infection and airway inflammation. To investigate antiinflammatory effects of SCN, we administered nebulized SCN or saline to ß epithelial sodium channel (ßENaC) mice, a phenotypic CF model. SCN significantly decreased airway neutrophil infiltrate and restored the redox ratio of glutathione in lung tissue and airway epithelial lining fluid to levels comparable to wild type. Furthermore, in Pseudomonas aeruginosa-infected ßENaC and wild-type mice, SCN decreased inflammation, proinflammatory cytokines, and bacterial load. SCN also decreased airway neutrophil chemokine keratinocyte chemoattractant (also known as C-X-C motif chemokine ligand 1) and glutathione sulfonamide, a biomarker of granulocyte oxidative activity, in uninfected ßENaC mice. Lung tissue TrxR activity and expression increased in inflamed lung tissue, providing in vivo evidence for the link between hypothiocyanous acid metabolism by TrxR and the promotion of selective biocide of pathogens. SCN treatment both suppressed inflammation and improved host defense, suggesting that nebulized SCN may have important therapeutic utility in diseases of both chronic airway inflammation and persistent bacterial infection, such as CF.


Assuntos
Antibacterianos/administração & dosagem , Anti-Inflamatórios/administração & dosagem , Fibrose Cística/tratamento farmacológico , Tiocianatos/administração & dosagem , Administração por Inalação , Animais , Antibacterianos/farmacologia , Anti-Inflamatórios/farmacologia , Linhagem Celular , Fibrose Cística/imunologia , Fibrose Cística/metabolismo , Avaliação Pré-Clínica de Medicamentos , Feminino , Pulmão/enzimologia , Pulmão/microbiologia , Masculino , Camundongos Endogâmicos C57BL , Estresse Oxidativo , Pneumonia Bacteriana/tratamento farmacológico , Pneumonia Bacteriana/enzimologia , Pneumonia Bacteriana/imunologia , Infecções por Pseudomonas/tratamento farmacológico , Infecções por Pseudomonas/enzimologia , Infecções por Pseudomonas/imunologia , Pseudomonas aeruginosa/imunologia , Tiocianatos/farmacologia , Tiorredoxina Dissulfeto Redutase/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA