Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 57
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Mol Ecol ; 33(7): e17306, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38414303

RESUMO

Variation in how individuals interact with food resources can directly impact, and be affected by, their microbial interactions due to the potential for transmission. The degree to which this transmission occurs, however, may depend on the structure of forager networks, which determine the community-scale transmission opportunities. In particular, how the community-scale opportunity for transfer balances individual-scale barriers to transmission is unclear. Examining the bee-flower and bee-microbial interactions of over 1000 individual bees, we tested (1) the degree to which individual floral visits predicted microbiome composition and (2) whether plant-bee networks with increased opportunity for microbial transmission homogenized the microbiomes of bees within that network. The pollen community composition carried by bees was associated with microbiome composition at some sites, suggesting that microbial transmission at flowers occurred. Contrary to our predictions, however, microbiome variability did not differ based on transfer opportunity: bee microbiomes in asymmetric networks with high opportunity for microbial transfer were similarly variable compared to microbiomes in networks with more evenly distributed links. These findings suggest that microbial transmission at flowers is frequent enough to be observed at the community level, but that community network structure did not substantially change the dynamics of this transmission, perhaps due to filtering processes in host guts.


Assuntos
Microbioma Gastrointestinal , Plantas , Humanos , Abelhas/genética , Animais , Pólen/genética , Flores , Polinização
2.
Microb Ecol ; 87(1): 25, 2024 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-38165515

RESUMO

Pollinators face many stressors, including reduced floral diversity. A low-diversity diet can impair organisms' ability to cope with additional stressors, such as pathogens, by altering the gut microbiome and/or immune function, but these effects are understudied for most pollinators. We investigated the impact of pollen diet diversity on two ecologically and economically important generalist pollinators, the social bumble bee (Bombus impatiens) and the solitary alfalfa leafcutter bee (Megachile rotundata). We experimentally tested the effect of one-, two-, or three-species pollen diets on gut bacterial communities in both species, and the melanization immune response in B. impatiens. Pollen diets included dandelion (Taraxacum officinale), staghorn sumac (Rhus typhina), and hawthorn (Crataegus sp.) alone, each pair-wise combination, or a mix of all three species. We fed bees their diet for 7 days and then dissected out guts and sequenced 16S rRNA gene amplicons to characterize gut bacterial communities. To assess melanization in B. impatiens, we inserted microfilament implants into the bee abdomen and measured melanin deposition on the implant. We found that pollen diet did not influence gut bacterial communities in M. rotundata. In B. impatiens, pollen diet composition, but not diversity, affected gut bacterial richness in older, but not newly-emerged bees. Pollen diet did not affect the melanization response in B. impatiens. Our results suggest that even a monofloral, low-quality pollen diet such as dandelion can support diverse gut bacterial communities in captive-reared adults of these bee species. These findings shed light on the effects of reduced diet diversity on bee health.


Assuntos
Microbioma Gastrointestinal , Abelhas , Animais , RNA Ribossômico 16S/genética , Dieta/veterinária , Medicago sativa , Pólen
3.
Trends Ecol Evol ; 39(1): 65-77, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37940503

RESUMO

While bee-angiosperm mutualisms are widely recognized as foundational partnerships that have shaped the diversity and structure of terrestrial ecosystems, these ancient mutualisms have been underpinned by 'silent third partners': microbes. Here, we propose reframing the canonical bee-angiosperm partnership as a three-way mutualism between bees, microbes, and angiosperms. This new conceptualization casts microbes as active symbionts, processing and protecting pollen-nectar provisions, consolidating nutrients for bee larvae, enhancing floral attractancy, facilitating plant fertilization, and defending bees and plants from pathogens. In exchange, bees and angiosperms provide their microbial associates with food, shelter, and transportation. Such microbial communities represent co-equal partners in tripartite mutualisms with bees and angiosperms, facilitating one of the most important ecological partnerships on land.


Assuntos
Magnoliopsida , Microbiota , Abelhas , Animais , Simbiose , Pólen , Polinização , Flores
4.
Front Microbiol ; 14: 1114849, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37089560

RESUMO

Pathogens and parasites of solitary bees have been studied for decades, but the microbiome as a whole is poorly understood for most taxa. Comparative analyses of microbiome features such as composition, abundance, and specificity, can shed light on bee ecology and the evolution of host-microbe interactions. Here we study microbiomes of ground-nesting cellophane bees (Colletidae: Diphaglossinae). From a microbial point of view, the diphaglossine genus Ptiloglossa is particularly remarkable: their larval provisions are liquid and smell consistently of fermentation. We sampled larval provisions and various life stages from wild nests of Ptiloglossa arizonensis and two species of closely related genera: Caupolicana yarrowi and Crawfordapis luctuosa. We also sampled nectar collected by P. arizonensis. Using 16S rRNA gene sequencing, we find that larval provisions of all three bee species are near-monocultures of lactobacilli. Nectar communities are more diverse, suggesting ecological filtering. Shotgun metagenomic and phylogenetic data indicate that Ptiloglossa culture multiple species and strains of Apilactobacillus, which circulate among bees and flowers. Larval lactobacilli disappear before pupation, and hence are likely not vertically transmitted, but rather reacquired from flowers as adults. Thus, brood cell microbiomes are qualitatively similar between diphaglossine bees and other solitary bees: lactobacilli-dominated, environmentally acquired, and non-species-specific. However, shotgun metagenomes provide evidence of a shift in bacterial abundance. As compared with several other bee species, Ptiloglossa have much higher ratios of bacterial to plant biomass in larval provisions, matching the unusually fermentative smell of their brood cells. Overall, Ptiloglossa illustrate a path by which hosts can evolve quantitatively novel symbioses: not by acquiring or domesticating novel symbionts, but by altering the microenvironment to favor growth of already widespread and generalist microbes.

5.
Proc Biol Sci ; 290(1996): 20230055, 2023 04 12.
Artigo em Inglês | MEDLINE | ID: mdl-37015273

RESUMO

Community diversity can reduce the prevalence and spread of disease, but certain species may play a disproportionate role in diluting or amplifying pathogens. Flowers act as both sources of nutrition and sites of pathogen transmission, but the effects of specific plant species in shaping bee disease dynamics are not well understood. We evaluated whether plantings of sunflower (Helianthus annuus), whose pollen reduces infection by some pathogens when fed to bees in captivity, lowered pathogen levels and increased reproduction in free-foraging bumblebee colonies (Bombus impatiens). Sunflower abundance reduced the prevalence of a common gut pathogen, Crithidia bombi, and reduced infection intensity, with an order of magnitude lower infection intensity at high sunflower sites compared with sites with little to no sunflower. Sunflower abundance was also positively associated with greater queen production in colonies. Sunflower did not affect prevalence of other detected pathogens. This work demonstrates that a single plant species can drive disease dynamics in foraging B. impatiens, and that sunflower plantings can be used as a tool for mitigating a prevalent pathogen while also increasing reproduction of an agriculturally important bee species.


Assuntos
Helianthus , Abelhas , Animais , Flores , Pólen , Plantas , Crithidia
6.
J Econ Entomol ; 116(3): 662-673, 2023 06 13.
Artigo em Inglês | MEDLINE | ID: mdl-36930576

RESUMO

Pollen is an essential component of bee diets, and rearing bumble bees (Bombus spp.) for commercial use necessitates feeding pollen in mass quantities. This pollen is collected from honey bee (Apis mellifera L.) colonies because neither an artificial diet nor an economical, large-scale pollen collection process from flowers is available. The provenance of honey bee-collected pollen is often unknown, and in some cases has crossed international borders. Both deformed wing virus (DWV) and the fungal pathogen Ascosphaera apis (Claussen) Olive & Spiltoir (cause of chalkbrood disease); occur in honey bee-collected pollen, and infections have been observed in bumble bees. We used these pathogens as general surrogates for viruses and spore-forming fungal diseases to test the efficacy of 3 sterilization methods, and assessed whether treatment altered pollen quality for the bumble bee. Using honey bee-collected pollen spiked with known doses of DWV and A. apis, we compared gamma irradiation (GI), ozone fumigation (OZ), and ethylene oxide fumigation (EO) against an untreated positive control and a negative control. Following sterilization treatments, we tested A. apis spore viability, detected viral presence with PCR, and tested palatability to the bumble bee Bombus impatiens Cresson. We also measured bacterial growth from pollens treated with EO and GI. GI and EO outperformed OZ treatment in pathogen suppression. EO had the highest sterilizing properties under commercial conditions and retained palatability and supported bee development better than other treatments. These results suggest that EO sterilization reduces pathogen risks while retaining pollen quality as a food source for rearing bumble bees.


Assuntos
Vírus de RNA , Abelhas , Animais , Vírus de RNA/genética , Reação em Cadeia da Polimerase , Pólen , Dieta
7.
Am Nat ; 200(5): 730-737, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36260853

RESUMO

AbstractDespite the increasingly documented occurrence of individual specialization, the relationship between individual consumer interactions and diet-related microbial communities in wild populations is still unclear. Using data from nests of Ceratina australensis from three different wild bee populations, we combine metabarcoding and network approaches to explore the existence of individual variation in resource use within and across populations and whether dietary specialization affects the richness of pollen-associated microbes. We reveal the existence of marked dietary specialization. In the most specialized population, we also show that individuals' diet breadth was positively related to the richness of fungi but not bacteria. Overall, individual specialization appeared to have a weak or negligible effect on the microbial richness of nests, suggesting that different mechanisms beyond environmental transmission may be at play regarding microbial acquisition in wild bees.


Assuntos
Flores , Microbiota , Abelhas , Animais , Pólen/microbiologia , Fungos , Dieta/veterinária
8.
Front Microbiol ; 13: 931291, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36090097

RESUMO

Floral nectar contains vital nutrients for pollinators, including sugars, amino acids, proteins, and secondary compounds. As pollinators forage, they inoculate nectar with bacteria and fungi. These microbes can colonize nectaries and alter nectar properties, including volume and chemistry. Abiotic factors, such as temperature, can influence microbial community structure and nectar traits. Considering current climate change conditions, studying the effects of increased temperature on ecosystem processes like pollination is ever more important. In a manipulative field experiment, we used a passive-heating technique to increase the ambient temperature of a California native plant, Penstemon heterophyllus, to test the hypothesis that temperatures elevated an average of 0.5°C will affect nectar properties and nectar-inhabiting microbial communities. We found that passive-heat treatment did not affect nectar properties or microbial communities. Penstemon heterophyllus fruit set also was not affected by passive-heat treatments, and neither was capsule mass, however plants subjected to heat treatments produced significantly more seeds than control. Although we conducted pollinator surveys, no pollinators were recorded for the duration of our experiment. A naturally occurring extreme temperature event did, however, have large effects on nectar sugars and nectar-inhabiting microbial communities. The initially dominant Lactobacillus sp. was replaced by Sediminibacterium, while Mesorhizobium, and Acinetobacter persisted suggesting that extreme temperatures can interrupt nectar microbiome community assembly. Our study indicates that the quality and attractiveness of nectar under climate change conditions could have implications on plant-pollinator interactions.

9.
Mol Ecol ; 31(7): 2157-2171, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35114032

RESUMO

Urbanization is associated with increases in impervious land cover, which alters the distribution of resources available to wildlife and concentrates activity in unbuilt spaces such as parks and gardens. How resource shifts alter the dynamics of parasite and pathogen transmission has not been addressed for many important species in urban systems. We focus on urban gardens, resource-rich "islands" within the urban matrix, to examine how the availability of floral resources at local and landscape scales influences the prevalence of six RNA viruses and three parasites in honey bees and bumble bees. Because parasites and pathogens are transmitted at flowers between visitors, we expected that floral abundance would concentrate bees within gardens, amplifying infection rates in pollinators, unless increases in floral resources would enhance bee diversity enough to dilute transmission. We found that garden size and flowering perennial plant abundance had a positive, direct effect on parasite and pathogen richness in bumble bees, suggesting that resource provisioning amplifies transmission. We also found that parasitism rates in honey bees were positively associated with parasites and pathogens in bumble bees, suggesting spillover between species. Encouragingly, we found evidence that management may mitigate parasitism through indirect effects: garden size had a positive impact on bee diversity, which in turn was negatively associated with parasite and pathogen richness in bumble bees. Unexpectedly, we observed that that parasite and pathogen richness in honey bees had no significant predictors, highlighting the complexity of comparing transmission dynamics between species. Although floral resources provide bees with food, we suggest more research on the tradeoffs between resource provisioning and disease transmission to implement conservation plantings in changing landscapes.


Assuntos
Parasitos , Urbanização , Animais , Animais Selvagens , Abelhas , Flores , Plantas , Polinização
10.
Microb Ecol ; 84(2): 473-482, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34596711

RESUMO

Floral nectar, an important resource for pollinators, is inhabited by microbes such as yeasts and bacteria, which have been shown to influence pollinator preference. Dynamic and complex plant-pollinator-microbe interactions are likely to be affected by a rapidly changing climate, as each player has their own optimal growth temperatures and phenological responses to environmental triggers, such as temperature. To understand how warming due to climate change is influencing nectar microbial communities, we incubated a natural nectar microbial community at different temperatures and assessed the subsequent nectar chemistry and preference of the common eastern bumble bee, Bombus impatiens. The microbial community in floral nectar is often species-poor, and the cultured Brassica rapa nectar community was dominated by the bacterium Fructobacillus. Temperature increased the abundance of bacteria in the warmer treatment. Bumble bees preferred nectar inoculated with microbes, but only at the lower, ambient temperature. Warming therefore induced an increase in bacterial abundance which altered nectar sugars and led to significant differences in pollinator preference.


Assuntos
Néctar de Plantas , Polinização , Animais , Bactérias , Abelhas , Flores/microbiologia , Polinização/fisiologia , Açúcares , Temperatura
11.
mBio ; 12(6): e0231721, 2021 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-34809450

RESUMO

Diet and gut microbiomes are intricately linked on both short and long timescales. Changes in diet can alter the microbiome, while microbes in turn allow hosts to access novel diets. Bees are wasps that switched to a vegetarian lifestyle, and the vast majority of bees feed on pollen and nectar. Some stingless bee species, however, also collect carrion, and a few have fully reverted to a necrophagous lifestyle, relying on carrion for protein and forgoing flower visitation altogether. These "vulture" bees belong to the corbiculate apid clade, which is known for its ancient association with a small group of core microbiome phylotypes. Here, we investigate the vulture bee microbiome, along with closely related facultatively necrophagous and obligately pollinivorous species, to understand how these diets interact with microbiome structure. Via deep sequencing of the 16S rRNA gene and subsequent community analyses, we find that vulture bees have lost some core microbes, retained others, and entered into novel associations with acidophilic microbes found in the environment and on carrion. The abundance of acidophilic bacteria suggests that an acidic gut is important for vulture bee nutrition and health, as has been found in other carrion-feeding animals. Facultatively necrophagous bees have more variable microbiomes than strictly pollinivorous bees, suggesting that bee diet may interact with microbiomes on both short and long timescales. Further study of vulture bees promises to provide rich insights into the role of the microbiome in extreme diet switches. IMPORTANCE When asked where to find bees, people often picture fields of wildflowers. While true for almost all species, there is a group of specialized bees, also known as the vulture bees, that instead can be found slicing chunks of meat from carcasses in tropical rainforests. In this study, researchers compared the microbiomes of closely related bees that live in the same region but vary in their dietary lifestyles: some exclusively consume pollen and nectar, others exclusively depend on carrion for their protein, and some consume all of the above. Researchers found that vulture bees lost some ancestral "core" microbes, retained others, and entered into novel associations with acidophilic microbes, which have similarly been found in other carrion-feeding animals such as vultures, these bees' namesake. This research expands our understanding of how diet interacts with microbiomes on both short and long timescales in one of the world's biodiversity hot spots.


Assuntos
Ração Animal/análise , Abelhas/microbiologia , Abelhas/fisiologia , Galinhas/parasitologia , Microbioma Gastrointestinal , Animais , Bactérias/classificação , Bactérias/genética , Bactérias/isolamento & purificação , Fenômenos Fisiológicos Bacterianos , Abelhas/classificação , Biodiversidade , Comportamento Alimentar , Flores/metabolismo , Flores/parasitologia , Simbiose
12.
Proc Biol Sci ; 288(1960): 20211369, 2021 10 13.
Artigo em Inglês | MEDLINE | ID: mdl-34641730

RESUMO

As the global agricultural footprint expands, it is increasingly important to address the link between the resource pulses characteristic of monoculture farming and wildlife epidemiology. To understand how mass-flowering crops impact host communities and subsequently amplify or dilute parasitism, we surveyed wild and managed bees in a monoculture landscape with varying degrees of floral diversification. We screened 1509 bees from 16 genera in sunflower fields and in non-crop flowering habitat across 200 km2 of the California Central Valley. We found that mass-flowering crops increase bee abundance. Wild bee abundance was subsequently associated with higher parasite presence, but only in sites with a low abundance of non-crop flowers. Bee traits related to higher dispersal ability (body size) and diet breadth (pollen lecty) were also positively related to parasite presence. Our results highlight the importance of non-crop flowering habitat for supporting bee communities. We suggest monoculture alone cannot support healthy bees.


Assuntos
Parasitos , Agricultura , Animais , Abelhas , Produtos Agrícolas , Ecossistema , Flores , Polinização , Prevalência
13.
Artigo em Inglês | MEDLINE | ID: mdl-34546865

RESUMO

Honey bees are important pollinators of many major crops and add billions of dollars annually to the US economy through their services. Recent declines in the health of the honey bee have startled researchers and lay people alike as honey bees are agriculture's most important pollinator. One factor that may influence colony health is the microbial community. Although honey bee worker guts have a characteristic community of bee-specific microbes, the honey bee queen digestive tracts are colonized predominantly by a single acetic acid bacterium tentatively named 'Parasaccharibacter apium'. This bacterium is related to flower-associated microbes such as Saccharibacter floricola, and initial phylogenetic analyses placed it as sister to these environmental bacteria. We used a combination of phylogenetic and sequence identity methods to better resolve evolutionary relationships among 'P. apium', strains in the genus Saccharibacter, and strains in the closely related genus Bombella. Interestingly, measures of genome-wide average nucleotide identity and aligned fraction, coupled with phylogenetic placement, indicate that many strains labelled as 'P. apium' and Saccharibacter species are all the same species as Bombella apis. We propose reclassifying these strains as Bombella apis and outline the data supporting that classification below.


Assuntos
Acetobacteraceae , Ácidos Graxos , Acetobacteraceae/genética , Animais , Técnicas de Tipagem Bacteriana , Composição de Bases , Abelhas , DNA Bacteriano/genética , Ácidos Graxos/química , Filogenia , RNA Ribossômico 16S/genética , Análise de Sequência de DNA
14.
PLoS One ; 16(7): e0255463, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34324610

RESUMO

Invasive species present a worldwide concern as competition and pathogen reservoirs for native species. Specifically, the invasive social wasp, Vespula pensylvanica, is native to western North America and has become naturalized in Hawaii, where it exerts pressures on native arthropod communities as a competitor and predator. As invasive species may alter the microbial and disease ecology of their introduced ranges, there is a need to understand the microbiomes and virology of social wasps. We used 16S rRNA gene sequencing to characterize the microbiome of V. pensylvanica samples pooled by colony across two geographically distinct ranges and found that wasps generally associate with taxa within the bacterial genera Fructobacillus, Fructilactobacillus, Lactococcus, Leuconostoc, and Zymobacter, and likely associate with environmentally-acquired bacteria. Furthermore, V. pensylvanica harbors-and in some cases were dominated by-many endosymbionts including Wolbachia, Sodalis, Arsenophonus, and Rickettsia, and were found to contain bee-associated taxa, likely due to scavenging on or predation upon honey bees. Next, we used reverse-transcriptase quantitative PCR to assay colony-level infection intensity for Moku virus (family: Iflaviridae), a recently-described disease that is known to infect multiple Hymenopteran species. While Moku virus was prevalent and in high titer, it did not associate with microbial diversity, indicating that the microbiome may not directly interact with Moku virus in V. pensylvanica in meaningful ways. Collectively, our results suggest that the invasive social wasp V. pensylvanica associates with a simple microbiome, may be infected with putative endosymbionts, likely acquires bacterial taxa from the environment and diet, and is often infected with Moku virus. Our results suggest that V. pensylvanica, like other invasive social insects, has the potential to act as a reservoir for bacteria pathogenic to other pollinators, though this requires experimental demonstration.


Assuntos
Abelhas , RNA Ribossômico 16S , Vespas , Animais , Vírus de RNA
15.
Curr Opin Insect Sci ; 44: 8-15, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-32992041

RESUMO

Growing evidence reveals strong overlap between microbiomes of flowers and bees, suggesting that flowers are hubs of microbial transmission. Whether floral transmission is the main driver of bee microbiome assembly, and whether functional importance of florally sourced microbes shapes bee foraging decisions are intriguing questions that remain unanswered. We suggest that interaction network properties, such as nestedness, connectedness, and modularity, as well as specialization patterns can predict potential transmission routes of microbes between hosts. Yet microbial filtering by plant and bee hosts determines realized microbial niches. Functionally, shared floral microbes can provide benefits for bees by enhancing nutritional quality, detoxification, and disintegration of pollen. Flower microbes can also alter the attractiveness of floral resources. Together, these mechanisms may affect the structure of the flower-bee interaction network.


Assuntos
Abelhas/microbiologia , Flores/microbiologia , Microbiota , Animais , Comportamento Animal , Evolução Biológica , Ecossistema , Polinização , Especificidade da Espécie
16.
Proc Biol Sci ; 287(1937): 20200980, 2020 10 28.
Artigo em Inglês | MEDLINE | ID: mdl-33109012

RESUMO

Bumblebees (Bombus spp.) are important and widespread insect pollinators, but the act of foraging on flowers can expose them to harmful pesticides and chemicals such as oxidizers and heavy metals. How these compounds directly influence bee survival and indirectly affect bee health via the gut microbiome is largely unknown. As toxicants in floral nectar and pollen take many forms, we explored the genomes of bee-associated microbes for their potential to detoxify cadmium, copper, selenate, the neonicotinoid pesticide imidacloprid, and hydrogen peroxide-which have all been identified in floral nectar and pollen. We then exposed Bombus impatiens workers to varying concentrations of these chemicals via their diet and assayed direct effects on bee survival. Using field-realistic doses, we further explored the indirect effects on bee microbiomes. We found multiple putative genes in core gut microbes that may aid in detoxifying harmful chemicals. We also found that while the chemicals are largely toxic at levels within and above field-realistic concentrations, the field-realistic concentrations-except for imidacloprid-altered the composition of the bee microbiome, potentially causing gut dysbiosis. Overall, our study shows that chemicals found in floral nectar and pollen can cause bee mortality, and likely have indirect, deleterious effects on bee health via their influence on the bee microbiome.


Assuntos
Abelhas/fisiologia , Poluentes Ambientais/toxicidade , Microbioma Gastrointestinal , Animais , Abelhas/microbiologia , Comportamento Alimentar , Flores , Inseticidas , Microbiota , Neonicotinoides , Nitrocompostos , Praguicidas/toxicidade , Néctar de Plantas , Pólen , Polinização
17.
Insects ; 11(9)2020 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-32962223

RESUMO

Mounting evidence suggests that microbes found in the pollen provisions of wild and solitary bees are important drivers of larval development. As these microbes are also known to be transmitted via the environment, most likely from flowers, the diet breadth of a bee may affect the diversity and identity of the microbes that occur in its pollen provisions. Here, we tested the hypothesis that, due to the importance of floral transmission of microbes, diet breadth affects pollen provision microbial community composition. We collected pollen provisions at four sites from the polylectic bee Osmia lignaria and the oligolectic bee Osmia ribifloris. We used high-throughput sequencing of the bacterial 16S rRNA gene to characterize the bacteria found in these provisions. We found minimal overlap in the specific bacterial variants in pollen provisions across the host species, even when the bees were constrained to foraging from the same flowers in cages at one site. Similarly, there was minimal overlap in the specific bacterial variants across sites, even within the same host species. Together, these findings highlight the importance of environmental transmission and host specific sorting influenced by diet breadth for microbes found in pollen provisions. Future studies addressing the functional consequences of this filtering, along with tests for differences between more species of oligoletic and polylectic bees will provide rich insights into the microbial ecology of solitary bees.

18.
Insects ; 11(8)2020 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-32759653

RESUMO

Bees collect pollen from flowers for their offspring, and by doing so contribute critical pollination services for our crops and ecosystems. Unlike many managed bee species, wild bees are thought to obtain much of their microbiome from the environment. However, we know surprisingly little about what plant species bees visit and the microbes associated with the collected pollen. Here, we addressed the hypothesis that the pollen and microbial components of bee diets would change across the range of the bee, by amplicon sequencing pollen provisions of a widespread small carpenter bee, Ceratina calcarata, across three populations. Ceratina calcarata was found to use a diversity of floral resources across its range, but the bacterial genera associated with pollen provisions were very consistent. Acinetobacter, Erwinia, Lactobacillus, Sodalis, Sphingomonas and Wolbachia were among the top ten bacterial genera across all sites. Ceratina calcarata uses both raspberry (Rubus) and sumac (Rhus) stems as nesting substrates, however nests within these plants showed no preference for host plant pollen. Significant correlations in plant and bacterial co-occurrence differed between sites, indicating that many of the most common bacterial genera have either regional or transitory floral associations. This range-wide study suggests microbes present in brood provisions are conserved within a bee species, rather than mediated by climate or pollen composition. Moving forward, this has important implications for how these core bacteria affect larval health and whether these functions vary across space and diet. These data increase our understanding of how pollinators interact with and adjust to their changing environment.

19.
Insects ; 11(8)2020 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-32785118

RESUMO

The brain-gut-microbiome axis is an emerging area of study, particularly in vertebrate systems. Existing evidence suggests that gut microbes can influence basic physiological functions and that perturbations to the gut microbiome can have deleterious effects on cognition and lead to neurodevelopmental disorders. While this relationship has been extensively studied in vertebrate systems, little is known about this relationship in insects. We hypothesized that because of its importance in bee health, the gut microbiota influences learning and memory in adult bumble bees. As an initial test of whether there is a brain-gut-microbiome axis in bumble bees, we reared microbe-inoculated and microbe-depleted bees from commercial Bombus impatiens colonies. We then conditioned experimental bees to associate a sucrose reward with a color and tested their ability to learn and remember the rewarding color. We found no difference between microbe-inoculated and microbe-depleted bumble bees in performance during the behavioral assay. While these results suggest that the brain-gut-microbiome axis is not evident in Bombus impatiens, future studies with different invertebrate systems are needed to further investigate this phenomenon.

20.
Insects ; 11(9)2020 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-32825355

RESUMO

European honey bees (Apis mellifera Linnaeus) are beneficial insects that provide essential pollination services for agriculture and ecosystems worldwide. Modern commercial beekeeping is plagued by a variety of pathogenic and environmental stressors often confounding attempts to understand colony loss. European foulbrood (EFB) is considered a larval-specific disease whose causative agent, Melissococcus plutonius, has received limited attention due to methodological challenges in the field and laboratory. Here, we improve the experimental and informational context of larval disease with the end goal of developing an EFB management strategy. We sequenced the bacterial microbiota associated with larval disease transmission, isolated a variety of M.plutonius strains, determined their virulence against larvae in vitro, and explored the potential for probiotic treatment of EFB disease. The larval microbiota was a low diversity environment similar to honey, while worker mouthparts and stored pollen contained significantly greater bacterial diversity. Virulence of M. plutonius against larvae varied markedly by strain and inoculant concentration. Our chosen probiotic, Parasaccharibacter apium strain C6, did not improve larval survival when introduced alone, or in combination with a virulent EFB strain. We discuss the importance of positive and negative controls for in vitro studies of the larval microbiome and disease.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA