Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
2.
RSC Adv ; 11(50): 31328-31338, 2021 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-35496850

RESUMO

Binary mixtures of hydrocarbons and a thermally robust ionic liquid (IL) incorporating a perarylphosphonium-based cation are investigated experimentally and computationally. Experimentally, it is seen that excess toluene added to the IL forms two distinct liquid phases, an "ion-rich" phase of fixed composition and a phase that is nearly pure toluene. Conversely, n-heptane is observed to be essentially immiscible in the neat IL. Molecular dynamics simulations capture both of these behaviours. Furthermore, the simulated composition of the toluene-rich IL phase is within 10% of the experimentally determined composition. Additional simulations are performed on the binary mixtures of the IL and ten other small hydrocarbons having mixed aromatic/aliphatic character. It is found that hydrocarbons with a predominant aliphatic character are largely immiscible with the IL, while those with a predominant aromatic character readily mix with the IL. A detailed analysis of the structure and energetic changes that occur on mixing reveals the nature of the ion-rich phase. The simulations show a bicontinuous phase with hydrocarbon uptake akin to absorption and swelling by a porous absorbent. Aromatic hydrocarbons are driven into the neat IL via dispersion forces with the IL cations and, to a lesser extent, the IL anions. The ion-ion network expands to accommodate the hydrocarbons, yet maintains a core connective structure. At a certain loading, this network becomes stretched to its limit. The energetic penalty associated with breaking the core connective network outweighs the gain from new hydrocarbon-IL interactions, leaving additional hydrocarbons in the neat phase. The spatially alternating charge of the expanded IL network is shown to interact favourably with the stacked aromatic subphase, something not possible for aliphatic hydrocarbons.

3.
Environ Sci Technol ; 49(24): 14239-48, 2015 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-26554276

RESUMO

As levels of natural organic matter (NOM) in surface water rise, the minimization of potentially harmful disinfection by-products (DBPs) becomes increasingly critical. Here, we introduce the advantage that chromatographic prefractionation brings to investigating compositional changes to NOM caused by chlorination. Fractionation reduces complexity, making it easier to observe changes and attribute them to specific components. Under the conditions tested (0.1-0.4 g of Cl to g of C without further additives), the differences between highly and less oxidized NOM were striking. Highly oxidized NOM formed more diverse Cl-containing DPB, had a higher propensity to react with multiple Cl, and tended to transform so drastically as to no longer be amenable to electrospray-ionization mass spectral detection. Less-oxidized material tended to incorporate one Cl and retain its humiclike composition. N-containing, lipidlike, and condensed aromatic structure (CAS)-like NOM were selectively enriched in mass spectra, suggesting that such components do not react as extensively with NaOCl as their counterparts. Carbohydrate-like NOM, conversely, was selectively removed from spectra by chlorination.


Assuntos
Cromatografia Líquida de Alta Pressão/métodos , Desinfecção/métodos , Espectrometria de Massas/métodos , Compostos Orgânicos/química , Carbono/química , Cloro/análise , Cromatografia , Halogenação , Substâncias Húmicas/análise , Concentração de Íons de Hidrogênio , Oxirredução , Raios Ultravioleta
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA