Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Front Microbiol ; 12: 726409, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34630352

RESUMO

Agent-based modeling (ABM) is a powerful simulation technique which describes a complex dynamic system based on its interacting constituent entities. While the flexibility of ABM enables broad application, the complexity of real-world models demands intensive computing resources and computational time; however, a metamodel may be constructed to gain insight at less computational expense. Here, we developed a model in NetLogo to describe the growth of a microbial population consisting of Pantoea. We applied 13 parameters that defined the model and actively changed seven of the parameters to modulate the evolution of the population curve in response to these changes. We efficiently performed more than 3,000 simulations using a Python wrapper, NL4Py. Upon evaluation of the correlation between the active parameters and outputs by random forest regression, we found that the parameters which define the depth of medium and glucose concentration affect the population curves significantly. Subsequently, we constructed a metamodel, a dense neural network, to predict the simulation outputs from the active parameters and found that it achieves high prediction accuracy, reaching an R 2 coefficient of determination value up to 0.92. Our approach of using a combination of ABM with random forest regression and neural network reduces the number of required ABM simulations. The simplified and refined metamodels may provide insights into the complex dynamic system before their transition to more sophisticated models that run on high-performance computing systems. The ultimate goal is to build a bridge between simulation and experiment, allowing model validation by comparing the simulated data to experimental data in microbiology.

2.
PLoS Comput Biol ; 15(12): e1007125, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31830032

RESUMO

We present NUFEB (Newcastle University Frontiers in Engineering Biology), a flexible, efficient, and open source software for simulating the 3D dynamics of microbial communities. The tool is based on the Individual-based Modelling (IbM) approach, where microbes are represented as discrete units and their behaviour changes over time due to a variety of processes. This approach allows us to study population behaviours that emerge from the interaction between individuals and their environment. NUFEB is built on top of the classical molecular dynamics simulator LAMMPS (Large-scale Atomic/Molecular Massively Parallel Simulator), which we extended with IbM features. A wide range of biological, physical and chemical processes are implemented to explicitly model microbial systems, with particular emphasis on biofilms. NUFEB is fully parallelised and allows for the simulation of large numbers of microbes (107 individuals and beyond). The parallelisation is based on a domain decomposition scheme that divides the domain into multiple sub-domains which are distributed to different processors. NUFEB also offers a collection of post-processing routines for the visualisation and analysis of simulation output. In this article, we give an overview of NUFEB's functionalities and implementation details. We provide examples that illustrate the type of microbial systems NUFEB can be used to model and simulate.


Assuntos
Microbiota , Modelos Biológicos , Software , Biofilmes/crescimento & desenvolvimento , Biologia Computacional , Simulação por Computador , Hidrodinâmica , Imageamento Tridimensional , Microbiota/fisiologia
3.
Front Microbiol ; 10: 1871, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31456784

RESUMO

Individual based Models (IbM) must transition from research tools to engineering tools. To make the transition we must aspire to develop large, three dimensional and physically and biologically credible models. Biological credibility can be promoted by grounding, as far as possible, the biology in thermodynamics. Thermodynamic principles are known to have predictive power in microbial ecology. However, this in turn requires a model that incorporates pH and chemical speciation. Physical credibility implies plausible mechanics and a connection with the wider environment. Here, we propose a step toward that ideal by presenting an individual based model connecting thermodynamics, pH and chemical speciation and environmental conditions to microbial growth for 5·105 individuals. We have showcased the model in two scenarios: a two functional group nitrification model and a three functional group anaerobic community. In the former, pH and connection to the environment had an important effect on the outcomes simulated. Whilst in the latter pH was less important but the spatial arrangements and community productivity (that is, methane production) were highly dependent on thermodynamic and reactor coupling. We conclude that if IbM are to attain their potential as tools to evaluate the emergent properties of engineered biological systems it will be necessary to combine the chemical, physical, mechanical and biological along the lines we have proposed. We have still fallen short of our ideals because we cannot (yet) calculate specific uptake rates and must develop the capacity for longer runs in larger models. However, we believe such advances are attainable. Ideally in a common, fast and modular platform. For future innovations in IbM will only be of use if they can be coupled with all the previous advances.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA