Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Int J Sports Phys Ther ; 19(1): 1462-1472, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38179583

RESUMO

Background: Rehabilitation clinicians that work with physically active populations are challenged with how to safely return patients back to performing deadlift movements following low back injury. Application of reliable and valid tests and measures to quantify impairments related to low back pain (LBP) enhances clinical decision making and may affect outcomes. Myotonometry is a non-invasive method to assess muscle stiffness which has demonstrated significant associations with physical performance and musculoskeletal injury. Hypothesis/Purpose: The purpose of this study was to compare the stiffness of trunk (lumbar multifidus [LM] and longissimus thoracis [LT]) and lower extremity (vastus lateralis [VL] and biceps femoris [BF]) muscles between individuals with and without LBP during the lying, standing, and deadlifting body positions. Study Design: Cross-sectional cohort comparison. Methods: Muscle stiffness measures were collected in the VL, BF, LM, and LT muscles with participants in lying (supine and prone), standing, and the trap bar deadlift position. Separate analyses of covariance were conducted to compare absolute and relative muscle stiffness between the groups for each muscle and condition. Results: Sixty-eight participants (41 female, 21.3 years, 34 LBP) volunteered for the study. Within the deadlift condition there was a significantly greater increase in the percent-muscle stiffness change in the VL (p = .029, 21.9%) and BF (p = .024, 11.2%) muscles in the control group than in the LBP group. There were no differences in percent-muscle stiffness changes for the standing condition nor were there any absolute muscle stiffness differences between the two groups for the three conditions. Conclusion: No differences in muscle stiffness were identified in the lying, standing, or deadlifting conditions between participants with and without LBP. Differences in percent stiffness changes were noted between groups for the deadlift position, however the differences were modest and within measurement error. Future studies should investigate the utility of myotonometry as a method to identify LBP-related impairments that contribute to chronic and/or recurrent low back injury. Level of Evidence: Level 3.

2.
Mil Med ; 189(1-2): e213-e219, 2024 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-37208314

RESUMO

INTRODUCTION: Low back and lower extremity injuries are responsible for the highest percentage of musculoskeletal injuries in U.S. Army soldiers. Execution of common soldier tasks as well as army combat fitness test events such as the three-repetition maximum deadlift depends on healthy functioning trunk and lower extremity musculature to minimize the risk of injury. To assist with appropriate return to duty decisions following an injury, reliable and valid tests and measures must be applied by military health care providers. Myotonometry is a noninvasive method to assess muscle stiffness, which has demonstrated significant associations with physical performance and musculoskeletal injury. The aim of this study is to determine the test-retest reliability of myotonometry in lumbar spine and thigh musculature across postures (standing and squatting) that are relevant to common soldier tasks and the maximum deadlift. MATERIALS AND METHODS: Repeat muscle stiffness measures were collected in 30 Baylor University Army Cadets with 1 week between each measurement. Measures were collected in the vastus lateralis (VL), biceps femoris (BF), lumbar multifidus (LM), and longissimus thoracis (LT) muscles with participants in standing and squatting positions. Intraclass correlation coefficients (ICCs3,2) were estimated, and their 95% CIs were calculated based on a mean rating, mixed-effects model. RESULTS: The test-retest reliability (ICC3,2) of the stiffness measures was good to excellent in all muscles across the standing position (ICCs: VL = 0.94 [0.87-0.97], BF = 0.97 [0.93-0.98], LM = 0.96 [0.91-0.98], LT = 0.81 [0.59-0.91]) and was excellent in all muscles across the squatting position (ICCs: VL = 0.95 [0.89-0.98], BF = 0.94 [0.87-0.97], LM = 0.96 [0.92-0.98], LT = 0.93 [0.86-0.97]). CONCLUSION: Myotonometry can reliably acquire stiffness measures in trunk and lower extremity muscles of healthy individuals in standing and squatting postures. These results may expand the research and clinical applications of myotonometry to identify muscular deficits and track intervention effectiveness. Myotonometry should be used in future studies to investigate muscle stiffness in these body positions in populations with musculoskeletal injuries and in research investigating the performance and rehabilitative intervention effectiveness.


Assuntos
Militares , Coxa da Perna , Humanos , Posição Ortostática , Reprodutibilidade dos Testes , Extremidade Inferior , Músculo Esquelético , Postura/fisiologia
3.
J Athl Train ; 58(4): 305-318, 2023 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-37418563

RESUMO

Myotonometry is a relatively novel method used to quantify the biomechanical and viscoelastic properties (stiffness, compliance, tone, elasticity, creep, and mechanical relaxation) of palpable musculotendinous structures with portable mechanical devices called myotonometers. Myotonometers obtain these measures by recording the magnitude of radial tissue deformation that occurs in response to the amount of force that is perpendicularly applied to the tissue through a device's probe. Myotonometric parameters such as stiffness and compliance have repeatedly demonstrated strong correlations with force production and muscle activation. Paradoxically, individual muscle stiffness measures have been associated with both superior athletic performance and a higher incidence of injury. This indicates optimal stiffness levels may promote athletic performance, whereas too much or too little may lead to an increased risk of injury. Authors of numerous studies suggested that myotonometry may assist practitioners in the development of performance and rehabilitation programs that improve athletic performance, mitigate injury risk, guide therapeutic interventions, and optimize return-to-activity decision-making. Thus, the purpose of our narrative review was to summarize the potential utility of myotonometry as a clinical tool that assists musculoskeletal clinicians with the diagnosis, rehabilitation, and prevention of athletic injuries.


Assuntos
Traumatismos em Atletas , Músculo Esquelético , Humanos , Músculo Esquelético/fisiologia , Elasticidade , Fenômenos Mecânicos
4.
J Int Soc Sports Nutr ; 19(1): 349-365, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35813844

RESUMO

Background: The Army Combat Fitness Test (ACFT), an updated and newly developed metric to assess combat readiness, may require specialized exercise and nutritional interventions. The purpose of this cross-sectional study was to investigate the relationship between body composition, erythrocyte long-chain omega-3 polyunsaturated fatty acids (LC n-3 PUFA), serum vitamin D (VITD) and ACFT performance. Methods: Sixty cadets (43 males, 17 females; 20.9 ± 3.8 years; 173.6 ± 10.2 cm; 75.6 ± 13.7 kg) completed the 6-event ACFT (3-repetition maximum trap-bar deadlift [3DL], standing power toss [SPT], hand-release pushups [HRPU], sprint-drag-carry shuttle run [SDC], leg tuck [LTK], or plank [PLK], and 2-mile run [2MR]), body composition analysis via dual-energy x-ray absorptiometry (percent body fat [%BF], lean body mass [LBM], fat-free mass index [FFMI (LBM+bone mineral content)]), and an omega-3 questionnaire. A sub-sample (n = 50) completed blood draws for fatty acid (eicosapentaenoic acid [EPA] and docosahexaenoic acid [DHA]) and VITD analysis. Significance was set at p < .05. Results: Lower %BF predicted better performance on all ACFT events (p < .05), except the PLK. Higher LBM was predictive of better performance on the 3DL, SPT, and SDC (p < .05), but no other events. Adjusted FFMI was positively correlated with the 3DL, SPT, HRPU, SDC, and ACFT scores (p < .01 for all). Cadet EPA and DHA dietary intake and omega-3 erythrocyte status was well below established recommendations (25.6 ± 33.9 mg, 58.3 ± 78.1 mg, respectively) and an omega-3 index (O3i = %EPA+%DHA in erythrocytes) of 3.96 ± 1.36%, respectively. EPA was associated with better performance on the 3DL (r = 0.280, p = .049), SPT (r = 0.314, p = .027), LTK (r = 0.316, p = .047), and PLK (r = 0.837, p = .003). After adjusting for body composition, erythrocyte EPA only remained predictive of PLK scores (p = .006). Every 0.1% increase in EPA translated into 5.4 (95% CI: 2.1, 8.8) better PLK score. The O3i or DHA were not associated with any performance variables. Cadets' average serum VITD status was 38.0 ± 14.9 ng∙ml-1. VITD was associated with 3DL (r = 0.305, p = .031), HRPU (r = 0.355, p = .011), 2MR (r = 0.326, p = .021), and total ACFT score (r = 0.359, p = .011). VITD remained predictive of each event after adjustment for body composition. Every 10 ng∙ml-1 increase in VITD was associated with 3-point increase in 3DL, HRPU, 2MR scores, and a 13-point increase in the total ACFT score. Conclusions: Our data highlight the importance of measures of muscularity, LBM and FFMI, on ACFT performance. Additionally, EPA and VITD status is associated with various strength, power, and muscular and aerobic endurance components of the ACFT. While these results could help professionals better assess and train military personnel, especially since these measures are modifiable through exercise and dietary interventions, they are ultimately hypothesis generating and warrant further exploration.


Assuntos
Ácidos Graxos Ômega-3 , Militares , Composição Corporal , Estudos Transversais , Suplementos Nutricionais , Ácidos Docosa-Hexaenoicos , Ácido Eicosapentaenoico , Feminino , Humanos , Masculino , Vitamina D , Vitaminas
5.
J Athl Train ; 2022 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-35834723

RESUMO

Myotonometry is a relatively novel method used to quantify the biomechanical and viscoelastic properties (stiffness, compliance, tone, elasticity, creep, mechanical relaxation) of palpable musculotendinous structures with portable mechanical devices called myotonometers. Myotonometers obtain these measures by recording the magnitude of radial tissue deformation that occurs in response to the amount of force that is perpendicularly applied to the tissue through a device's probe. Myotonometric parameters such as stiffness and compliance have repeatedly demonstrated strong correlations with force production and muscle activation. Paradoxically, individual muscle stiffness measures have been associated with both superior athletic performance and higher incidence of injury. This suggest there may be optimal stiffness levels that promotes athletic performance while too much or too little may lead to an increased risk of injury. Numerous studies suggest that myotonometry may assist practitioners in the development of performance and rehabilitation programs that improves athletic performance, mitigates injury risk, guides therapeutic interventions, and optimizes return to activity decision making. Thus, the purpose of this narrative review is to summarize the potential utility of myotonometry as a clinical tool that assists musculoskeletal clinicians with the diagnosis, rehabilitation, and prevention of athletic injuries.

6.
Man Ther ; 20(6): 769-76, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25801100

RESUMO

BACKGROUND: Little is known about the physiologic mechanism of dry needling. While some evidence suggests that dry needling may decrease nocioceptive sensitivity and facilitate muscle function, no studies to date have examined these physiologic changes compared to clinical outcomes. OBJECTIVE: To examine changes in lumbar multifidus (LM) muscle function and nociceptive sensitivity after dry needling in patients with LBP and to determine if such changes differ in patients that exhibit improved disability (responders) and those that do not (non-responders). DESIGN: Quasi-experimental study. METHODS: Sixty-six volunteers with mechanical LBP (38 men, age = 41.3 ± 9.2 years) completed the study. Ultrasound measurements and pain algometry of the LM were taken at baseline and repeated immediately following dry needling treatment to the LM muscles and after one week. The percent change in muscle thickness from rest to contraction was calculated for each time point to represent muscle function. Pressure pain threshold (PPT) was used to measure nociceptive sensitivity. Participants were dichotomized as responders and non-responders based on whether or not they experienced clinical improvement using the modified Oswestry Disability Index after one week. 2 × 3 mixed-model ANOVA were conducted for group (responders vs. non-responders) by time. RESULTS: Patient responders exhibited larger improvements in LM muscle contraction and nociceptive sensitivity 1 week, but not immediately, after dry needling than non-responders. CONCLUSIONS: Our results suggest that there may be lasting and clinically relevant sensorimotor changes that occur in LBP patients that improve with dry needling treatment that partially explain the physiologic mechanism of action.


Assuntos
Terapia por Acupuntura/métodos , Dor Lombar/terapia , Nociceptores/fisiologia , Medição da Dor , Limiar da Dor/fisiologia , Adulto , Estudos de Coortes , Feminino , Humanos , Dor Lombar/diagnóstico por imagem , Masculino , Pessoa de Meia-Idade , Contração Muscular/fisiologia , Músculos Paraespinais/fisiopatologia , Medição de Risco , Índice de Gravidade de Doença , Falha de Tratamento , Resultado do Tratamento , Ultrassonografia Doppler/métodos
7.
J Orthop Sports Phys Ther ; 44(5): 377, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24787327

RESUMO

The patient was a 22-year-old man who was currently serving in a military special operations training program. He was referred to a physical therapist for a chief complaint of left elbow pain that currently prevented him from performing routine upper extremity exercise activities. Due to the traumatic nature of the patient's injury, inability to fully extend his elbow, and palpation findings, there was concern for a radial head fracture. Therefore, the physical therapist ordered radiographs of the left elbow, which revealed an intra-articular fracture involving the radial head that extended through the neck of the radius.


Assuntos
Militares , Fraturas do Rádio/diagnóstico por imagem , Adulto , Artralgia/etiologia , Articulação do Cotovelo , Humanos , Masculino , Radiografia , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA