Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Elife ; 102021 01 13.
Artigo em Inglês | MEDLINE | ID: mdl-33438581

RESUMO

The ADP-ribosylation factor-like 3 (ARL3) is a ciliopathy G-protein which regulates the ciliary trafficking of several lipid-modified proteins. ARL3 is activated by its guanine exchange factor (GEF) ARL13B via an unresolved mechanism. BART is described as an ARL3 effector which has also been implicated in ciliopathies, although the role of its ARL3 interaction is unknown. Here, we show that, at physiological GTP:GDP levels, human ARL3GDP is weakly activated by ARL13B. However, BART interacts with nucleotide-free ARL3 and, in concert with ARL13B, efficiently activates ARL3. In addition, BART binds ARL3GTP and inhibits GTP dissociation, thereby stabilising the active G-protein; the binding of ARL3 effectors then releases BART. Finally, using live cell imaging, we show that BART accesses the primary cilium and colocalises with ARL13B. We propose a model wherein BART functions as a bona fide co-GEF for ARL3 and maintains the active ARL3GTP, until it is recycled by ARL3 effectors.


Assuntos
Fatores de Ribosilação do ADP/genética , Cílios/metabolismo , Fatores de Transcrição/genética , Fatores de Ribosilação do ADP/metabolismo , Animais , Guanina/metabolismo , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Camundongos , Células NIH 3T3 , Fatores de Transcrição/metabolismo
2.
Dev Cell ; 47(1): 122-132.e4, 2018 10 08.
Artigo em Inglês | MEDLINE | ID: mdl-30220567

RESUMO

Upon engagement of the T cell receptor with an antigen-presenting cell, LCK initiates TCR signaling by phosphorylating its activation motifs. However, the mechanism of LCK activation specifically at the immune synapse is a major question. We show that phosphorylation of the LCK activating Y394, despite modestly increasing its catalytic rate, dramatically focuses LCK localization to the immune synapse. We describe a trafficking mechanism whereby UNC119A extracts membrane-bound LCK by sequestering the hydrophobic myristoyl group, followed by release at the target membrane under the control of the ciliary ARL3/ARL13B. The UNC119A N terminus acts as a "regulatory arm" by binding the LCK kinase domain, an interaction inhibited by LCK Y394 phosphorylation, thus together with the ARL3/ARL13B machinery ensuring immune synapse focusing of active LCK. We propose that the ciliary machinery has been repurposed by T cells to generate and maintain polarized segregation of signals such as activated LCK at the immune synapse.


Assuntos
Cílios/fisiologia , Sinapses Imunológicas/fisiologia , Proteína Tirosina Quinase p56(lck) Linfócito-Específica/metabolismo , Fatores de Ribosilação do ADP/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Células Apresentadoras de Antígenos/imunologia , Humanos , Células Jurkat , Ativação Linfocitária , Fosforilação , Transporte Proteico , Receptores de Antígenos de Linfócitos T/metabolismo , Receptores de Antígenos de Linfócitos T/fisiologia , Transdução de Sinais/fisiologia
3.
Nucleic Acids Res ; 43(12): 6134-43, 2015 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-25990737

RESUMO

To analyse the mechanism and kinetics of DNA strand cleavages catalysed by the serine recombinase Tn3 resolvase, we made modified recombination sites with a single-strand nick in one of the two DNA strands. Resolvase acting on these sites cleaves the intact strand very rapidly, giving an abnormal half-site product which accumulates. We propose that these reactions mimic second-strand cleavage of an unmodified site. Cleavage occurs in a synapse of two sites, held together by a resolvase tetramer; cleavage at one site stimulates cleavage at the partner site. After cleavage of a nicked-site substrate, the half-site that is not covalently linked to a resolvase subunit dissociates rapidly from the synapse, destabilizing the entire complex. The covalent resolvase-DNA linkages in the natural reaction intermediate thus perform an essential DNA-tethering function. Chemical modifications of a nicked-site substrate at the positions of the scissile phosphodiesters result in abolition or inhibition of resolvase-mediated cleavage and effects on resolvase binding and synapsis, providing insight into the serine recombinase catalytic mechanism and how resolvase interacts with the substrate DNA.


Assuntos
Clivagem do DNA , DNA/metabolismo , Transposon Resolvases/metabolismo , DNA/química , Cinética , Recombinação Genética
4.
Nat Struct Mol Biol ; 21(11): 962-968, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25282148

RESUMO

Mutations in BRCA2 increase susceptibility to breast, ovarian and prostate cancers. The product of human BRCA2, BRCA2 protein, has a key role in the repair of DNA double-strand breaks and interstrand cross-links by RAD51-mediated homologous recombination. Here, we present a biochemical and structural characterization of full-length (3,418 amino acid) BRCA2, alone and in complex with RAD51. We show that BRCA2 facilitates nucleation of RAD51 filaments at multiple sites on single-stranded DNA. Three-dimensional EM reconstructions revealed that BRCA2 exists as a dimer and that two oppositely oriented sets of RAD51 molecules bind the dimer. Single-stranded DNA binds along the long axis of BRCA2, such that only one set of RAD51 monomers can form a productive complex with DNA and establish filament formation. Our data define the molecular mechanism by which this tumor suppressor facilitates RAD51-mediated homologous-recombinational repair.


Assuntos
Proteína BRCA2/química , Reparo do DNA , DNA de Cadeia Simples/química , Rad51 Recombinase/química , Proteína BRCA2/genética , Proteína BRCA2/metabolismo , Quebras de DNA de Cadeia Dupla , DNA de Cadeia Simples/genética , DNA de Cadeia Simples/metabolismo , Expressão Gênica , Células HeLa , Recombinação Homóloga , Humanos , Modelos Moleculares , Conformação Proteica , Multimerização Proteica , Rad51 Recombinase/genética , Rad51 Recombinase/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo
5.
Nat Struct Mol Biol ; 17(10): 1263-5, 2010 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-20729858

RESUMO

Individuals with BRCA2 mutations are predisposed to breast cancers owing to genome instability. To determine the functions of BRCA2, the human protein was purified. It was found to bind selectively to single-stranded DNA (ssDNA), and to ssDNA in tailed duplexes and replication fork structures. Monomeric and dimeric forms of BRCA2 were observed by EM. BRCA2 directed the binding of RAD51 recombinase to ssDNA, reduced the binding of RAD51 to duplex DNA and stimulated RAD51-mediated DNA strand exchange. These observations provide a molecular basis for the role of BRCA2 in the maintenance of genome stability.


Assuntos
Proteína BRCA2/fisiologia , DNA de Cadeia Simples/metabolismo , Rad51 Recombinase/fisiologia , Motivos de Aminoácidos , Proteínas Reguladoras de Apoptose , Proteína BRCA2/química , Proteína BRCA2/ultraestrutura , Neoplasias da Mama/metabolismo , DNA/metabolismo , Reparo do DNA/fisiologia , Replicação do DNA , Feminino , Células HeLa , Humanos , Microscopia Eletrônica , Proteínas de Neoplasias/química , Proteínas de Neoplasias/fisiologia , Ligação Proteica , Mapeamento de Interação de Proteínas , Rad51 Recombinase/química , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/fisiologia
6.
Science ; 327(5970): 1254-8, 2010 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-20203049

RESUMO

Meiotic crossovers (COs) are tightly regulated to ensure that COs on the same chromosome are distributed far apart (crossover interference, COI) and that at least one CO is formed per homolog pair (CO homeostasis). CO formation is controlled in part during meiotic double-strand break (DSB) creation in Caenorhabditis elegans, but a second level of control must also exist because meiotic DSBs outnumber COs. We show that the antirecombinase RTEL-1 is required to prevent excess meiotic COs, probably by promoting meiotic synthesis-dependent strand annealing. Two distinct classes of meiotic COs are increased in rtel-1 mutants, and COI and homeostasis are compromised. We propose that RTEL-1 implements the second level of CO control by promoting noncrossovers.


Assuntos
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/genética , Troca Genética , DNA Helicases/metabolismo , Meiose , Animais , Caenorhabditis elegans/fisiologia , Proteínas de Caenorhabditis elegans/genética , Cromátides/genética , Proteínas Cromossômicas não Histona/genética , Proteínas Cromossômicas não Histona/metabolismo , Quebras de DNA de Cadeia Dupla , DNA Helicases/genética , Reparo do DNA , DNA de Helmintos/genética , DNA de Helmintos/metabolismo , Homeostase , Mutação , Polimorfismo de Nucleotídeo Único , Cromossomo X/genética
7.
Cell ; 135(2): 261-71, 2008 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-18957201

RESUMO

Homologous recombination (HR) is an important conserved process for DNA repair and ensures maintenance of genome integrity. Inappropriate HR causes gross chromosomal rearrangements and tumorigenesis in mammals. In yeast, the Srs2 helicase eliminates inappropriate recombination events, but the functional equivalent of Srs2 in higher eukaryotes has been elusive. Here, we identify C. elegans RTEL-1 as a functional analog of Srs2 and describe its vertebrate counterpart, RTEL1, which is required for genome stability and tumor avoidance. We find that rtel-1 mutant worms and RTEL1-depleted human cells share characteristic phenotypes with yeast srs2 mutants: lethality upon deletion of the sgs1/BLM homolog, hyperrecombination, and DNA damage sensitivity. In vitro, purified human RTEL1 antagonizes HR by promoting the disassembly of D loop recombination intermediates in a reaction dependent upon ATP hydrolysis. We propose that loss of HR control after deregulation of RTEL1 may be a critical event that drives genome instability and cancer.


Assuntos
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/enzimologia , DNA Helicases/metabolismo , Instabilidade Genômica , Recombinação Genética , Animais , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , DNA/metabolismo , DNA Helicases/genética , Reparo do DNA , Humanos , Mutação , Saccharomyces cerevisiae/enzimologia , Proteínas de Saccharomyces cerevisiae/metabolismo
8.
Nature ; 453(7195): 677-81, 2008 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-18449195

RESUMO

Single-strand DNA (ssDNA)-binding proteins (SSBs) are ubiquitous and essential for a wide variety of DNA metabolic processes, including DNA replication, recombination, DNA damage detection and repair. SSBs have multiple roles in binding and sequestering ssDNA, detecting DNA damage, stimulating nucleases, helicases and strand-exchange proteins, activating transcription and mediating protein-protein interactions. In eukaryotes, the major SSB, replication protein A (RPA), is a heterotrimer. Here we describe a second human SSB (hSSB1), with a domain organization closer to the archaeal SSB than to RPA. Ataxia telangiectasia mutated (ATM) kinase phosphorylates hSSB1 in response to DNA double-strand breaks (DSBs). This phosphorylation event is required for DNA damage-induced stabilization of hSSB1. Upon induction of DNA damage, hSSB1 accumulates in the nucleus and forms distinct foci independent of cell-cycle phase. These foci co-localize with other known repair proteins. In contrast to RPA, hSSB1 does not localize to replication foci in S-phase cells and hSSB1 deficiency does not influence S-phase progression. Depletion of hSSB1 abrogates the cellular response to DSBs, including activation of ATM and phosphorylation of ATM targets after ionizing radiation. Cells deficient in hSSB1 exhibit increased radiosensitivity, defective checkpoint activation and enhanced genomic instability coupled with a diminished capacity for DNA repair. These findings establish that hSSB1 influences diverse endpoints in the cellular DNA damage response.


Assuntos
Reparo do DNA , Proteínas de Ligação a DNA/metabolismo , Instabilidade Genômica , Proteínas Mutadas de Ataxia Telangiectasia , Ciclo Celular/efeitos dos fármacos , Ciclo Celular/efeitos da radiação , Proteínas de Ciclo Celular/metabolismo , Reparo do DNA/efeitos da radiação , Proteínas de Ligação a DNA/antagonistas & inibidores , Proteínas de Ligação a DNA/genética , Instabilidade Genômica/efeitos da radiação , Células HeLa , Humanos , Proteínas Mitocondriais , Fosforilação , Proteínas Serina-Treonina Quinases/metabolismo , Transporte Proteico/efeitos da radiação , Radiação Ionizante , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/efeitos da radiação , Proteínas Supressoras de Tumor/metabolismo
9.
Mol Cell ; 29(4): 510-6, 2008 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-18313388

RESUMO

Homologous recombination (HR) is essential for the repair of DNA double-strand breaks (DSBs) in mitotic and meiotic cells. HR occurs through a series of steps involving DSB resection, invasion of single-stranded DNA into homologous duplex DNA to form a D loop, repair synthesis, and second-end capture. We show that DNA repair synthesis, catalyzed by human DNA polymerase eta (poleta) acting upon the priming strand of a D loop, leads to capture and annealing of the second end of a resected DSB in reactions mediated by RAD52 protein. Second-end capture products were not detected when poleta was replaced by other polymerases such as poldelta or poliota. RAD52 could not be replaced by RAD51. We also found that the RAD52-dependent reaction was stimulated by the single-strand binding protein RPA, but not by E. coli SSB. Following repair synthesis and second-end capture, de novo DNA synthesis was observed from the captured second DNA end.


Assuntos
Quebras de DNA de Cadeia Dupla , Reparo do DNA , DNA de Cadeia Simples , Conformação de Ácido Nucleico , Proteína Rad52 de Recombinação e Reparo de DNA/metabolismo , Recombinação Genética , Animais , DNA de Cadeia Simples/química , DNA de Cadeia Simples/genética , DNA de Cadeia Simples/metabolismo , DNA Polimerase Dirigida por DNA/genética , DNA Polimerase Dirigida por DNA/metabolismo , Humanos , Isoenzimas/genética , Isoenzimas/metabolismo , Rad51 Recombinase/genética , Rad51 Recombinase/metabolismo , Proteína Rad52 de Recombinação e Reparo de DNA/genética , Proteína de Replicação A/genética , Proteína de Replicação A/metabolismo
10.
Mol Cell ; 20(5): 783-92, 2005 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-16337601

RESUMO

Stalled replication forks pose a serious threat to genome integrity. To overcome the catastrophic consequences associated with fork demise, translesion synthesis (TLS) polymerases such as poleta promote DNA synthesis past lesions. Alternatively, a stalled fork may collapse and undergo repair by homologous recombination. By using fractionated cell extracts and purified recombinant proteins, we show that poleta extends DNA synthesis from D loop recombination intermediates in which an invading strand serves as the primer. Extracts from XP-V cells, which are defective in poleta, exhibit severely reduced D loop extension activity. The D loop extension activity of poleta is unusual, as this reaction cannot be promoted by the replicative DNA polymerase delta or by other TLS polymerases such as poliota. Moreover, we find that poleta interacts with RAD51 recombinase and RAD51 stimulates poleta-mediated D loop extension. Our results indicate a dual function for poleta at stalled replication forks: the promotion of translesion synthesis and the reinitiation of DNA synthesis by homologous recombination repair.


Assuntos
DNA de Cadeia Simples/genética , DNA Polimerase Dirigida por DNA/metabolismo , DNA/biossíntese , Recombinação Genética , Extratos Celulares , Linhagem Celular , Reparo do DNA/fisiologia , Replicação do DNA/fisiologia , DNA de Cadeia Simples/efeitos da radiação , DNA Polimerase Dirigida por DNA/genética , DNA Polimerase Dirigida por DNA/efeitos da radiação , Células HeLa , Humanos , Modelos Genéticos , Rad51 Recombinase/metabolismo
11.
Mol Cell Biol ; 25(8): 3127-39, 2005 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-15798199

RESUMO

The BRCA2 tumor suppressor is implicated in DNA double-strand break (DSB) repair by homologous recombination (HR), where it regulates the RAD51 recombinase. We describe a BRCA2-related protein of Caenorhabditis elegans (CeBRC-2) that interacts directly with RAD-51 via a single BRC motif and that binds preferentially to single-stranded DNA through an oligonucleotide-oligosaccharide binding fold. Cebrc-2 mutants fail to repair meiotic or radiation-induced DSBs by HR due to inefficient RAD-51 nuclear localization and a failure to target RAD-51 to sites of DSBs. Genetic and cytological comparisons of Cebrc-2 and rad-51 mutants revealed fundamental phenotypic differences that suggest a role for Cebrc-2 in promoting the use of an alternative repair pathway in the absence of rad-51 and independent of nonhomologous end joining (NHEJ). Unlike rad-51 mutants, Cebrc-2 mutants also accumulate RPA-1 at DSBs, and abnormal chromosome aggregates that arise during the meiotic prophase can be rescued by blocking the NHEJ pathway. CeBRC-2 also forms foci in response to DNA damage and can do so independently of rad-51. Thus, CeBRC-2 not only regulates RAD-51 during HR but can also function independently of rad-51 in DSB repair processes.


Assuntos
Caenorhabditis elegans/fisiologia , Dano ao DNA , Reparo do DNA/fisiologia , Proteínas de Ligação a DNA/metabolismo , Proteínas de Ligação a DNA/fisiologia , Motivos de Aminoácidos , Sequência de Aminoácidos , Animais , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans , DNA/efeitos da radiação , Proteínas de Ligação a DNA/análise , Proteínas de Ligação a DNA/genética , Embrião não Mamífero , Deleção de Genes , Genes Letais , Células Germinativas/química , Células Germinativas/metabolismo , Células Germinativas/efeitos da radiação , Dados de Sequência Molecular , Rad51 Recombinase , Proteína de Replicação A
12.
J Mol Biol ; 337(4): 817-27, 2004 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-15033353

RESUMO

Homologous recombination provides a major pathway for the repair of DNA double-strand breaks in mammalian cells. Defects in homologous recombination can lead to high levels of chromosomal translocations or deletions, which may promote cell transformation and cancer development. A key component of this process is RAD51. In comparison to RecA, the bacterial homologue, human RAD51 protein exhibits low-level strand-exchange activity in vitro. This activity can, however, be stimulated by the presence of high salt. Here, we have investigated the mechanistic basis for this stimulation. We show that high ionic strength favours the co-aggregation of RAD51-single-stranded DNA (ssDNA) nucleoprotein filaments with naked duplex DNA, to form a complex in which the search for homologous sequences takes place. High ionic strength allows differential binding of RAD51 to ssDNA and double-stranded DNA (dsDNA), such that ssDNA-RAD51 interactions are unaffected, whereas those between RAD51 and dsDNA are destabilized. Most importantly, high salt induces a conformational change in RAD51, leading to the formation of extended nucleoprotein filaments on ssDNA. These extended filaments mimic the active form of the Escherichia coli RecA-ssDNA filament that exhibits efficient strand-exchange activity.


Assuntos
Proteínas de Ligação a DNA/metabolismo , DNA/metabolismo , DNA de Cadeia Simples/metabolismo , Humanos , Concentração Osmolar , Ligação Proteica , Conformação Proteica , Rad51 Recombinase
13.
J Mol Biol ; 319(2): 385-93, 2002 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-12051915

RESUMO

Catalysis of site-specific recombination is preceded by the formation of a synapse comprising two DNA sites and multiple subunits of the recombinase, together with other "accessory" proteins in some cases. We investigated the stability of synapses of Tn3 resolvase-bound res recombination sites, in plasmids containing either two or three res sites. Although synapses are long-lived in plasmids with just two res sites, persisting for tens of minutes, a synapse of any two sites is relatively short-lived in plasmids with three res sites. The three alternative pairwise synapses that can be formed in three-res plasmids re-assort rapidly relative to the rate of recombination. We propose a "partner exchange" mechanism for this re-assortment, involving direct attack on a synapse by an unpaired res site. This mechanism reconciles studies on selective synapsis in multi-res substrates, which imply rapid interchange of synaptic pairings, with studies indicating that synapses of two Tn3res sites are stable.


Assuntos
Elementos de DNA Transponíveis/genética , Plasmídeos/metabolismo , Recombinação Genética/genética , Sequência de Bases , Sítios de Ligação , Troca Genética/genética , Proteínas de Ligação a DNA/metabolismo , Conformação de Ácido Nucleico , Plasmídeos/química , Plasmídeos/genética , Recombinases , Sequências Repetitivas de Ácido Nucleico/genética , Especificidade por Substrato , Moldes Genéticos , Transposases/metabolismo , Transposon Resolvases
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA