Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Tipo de estudo
Intervalo de ano de publicação
1.
Sci Adv ; 8(36): eabq3235, 2022 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-36070379

RESUMO

Most of the world's biodiversity lives in cold (-2° to 4°C) and hypersaline environments. To understand how cells adapt to such conditions, we isolated two key components of the transcription machinery from fungal species that live in extreme polar environments: the Ess1 prolyl isomerase and its target, the carboxy-terminal domain (CTD) of RNA polymerase II. Polar Ess1 enzymes are conserved and functional in the model yeast, Saccharomyces cerevisiae. By contrast, polar CTDs diverge from the consensus (YSPTSPS)26 and are not fully functional in S. cerevisiae. These CTDs retain the critical Ess1 Ser-Pro target motifs, but substitutions at Y1, T4, and S7 profoundly affected their ability to undergo phase separation in vitro and localize in vivo. We propose that environmentally tuned phase separation by the CTD and other intrinsically disordered regions plays an adaptive role in cold tolerance by concentrating enzymes and substrates to overcome energetic barriers to metabolic activity.

2.
Dis Aquat Organ ; 130(3): 187-197, 2018 09 27.
Artigo em Inglês | MEDLINE | ID: mdl-30259871

RESUMO

Chytridiomycosis and ranavirosis are 2 emerging infectious diseases that have caused significant global amphibian decline. Although both have received much scrutiny, little is known about interactions between the 2 causative agents Batrachochytrium dendrobatidis (Bd) and ranavirus (Rv) at the individual host and population levels. We present the first longitudinal assessment of Bd, Rv, and co-infections of a temperate amphibian assemblage in North America. From 2012 to 2016, we assessed the temporal oscillations of Bd, Rv and co-infection dynamics in a sample of 729 animals representing 13 species. Bd, Rv, and co-infected amphibians were detected during all 5 yr. Bd, Rv, and co-infection prevalence all varied annually, with the lowest instances of each at 2.1% (2013), 7.9% (2016), and 0.6% (2016), respectively. The highest Bd, Rv, and co-infection prevalence were recorded in 2012 (26.8%), 2016 (38.3%), and 2015 (10.3%), respectively. There was no association between Bd or Rv infection prevalence and co-infection, either when assessing the entire amphibian assemblage as a whole (odds ratio 1.32, 95% CI: 0.83-2.1, p = 0.29) or within species for amphibians that were more numerically represented (n > 40, p > 0.05). This suggests neither Bd nor Rv facilitate host co-infections within the sampled host assemblage. Instead, the basis for co-infections is the spatiotemporal distribution of both pathogens. Despite lack of interplay between Bd and Rv in this population, our study highlights the importance of considering numerous pathogens that may be present within amphibian habitats in order to properly anticipate interactions that may have direct bearing on disease outcomes.


Assuntos
Anfíbios , Quitridiomicetos , Coinfecção , Ranavirus , Anfíbios/microbiologia , Anfíbios/virologia , Animais , Quitridiomicetos/isolamento & purificação , Micoses/veterinária , Ranavirus/isolamento & purificação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA