Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Chest ; 164(3): 625-636, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37011709

RESUMO

BACKGROUND: Epstein-Barr virus (EBV) frequently is measured at high levels in COPD using sputum quantitative polymerase chain reaction, whereas airway immunohistochemistry analysis has shown EBV detection to be common in severe disease. RESEARCH QUESTION: Is valaciclovir safe and effective for EBV suppression in COPD? STUDY DESIGN AND METHODS: The Epstein-Barr Virus Suppression in COPD (EViSCO) trial was a randomized double-blind placebo-controlled trial conducted at the Mater Hospital Belfast, Northern Ireland. Eligible patients had stable moderate-to-severe COPD and sputum EBV (measured using quantitative polymerase chain reaction) and were assigned randomly (1:1) to valaciclovir (1 g tid) or matching placebo for 8 weeks. The primary efficacy outcome was sputum EBV suppression (defined as ≥ 90% sputum viral load reduction) at week 8. The primary safety outcome was the incidence of serious adverse reactions. Secondary outcome measures were FEV1 and drug tolerability. Exploratory outcomes included changes in quality of life, sputum cell counts, and cytokines. RESULTS: From November 2, 2018, through March 12, 2020, 84 patients were assigned randomly (n = 43 to valaciclovir). Eighty-one patients completed trial follow-up and were included in the intention-to-treat analysis of the primary outcome. A greater number of participants in the valaciclovir group achieved EBV suppression (n = 36 [87.8%] vs n = 17 [42.5%]; P < .001). Valaciclovir was associated with a significant reduction in sputum EBV titer compared with placebo (-90,404 copies/mL [interquartile range, -298,000 to -15,200 copies/mL] vs -3,940 copies/mL [interquartile range, -114,400 to 50,150 copies/mL]; P = .002). A statistically nonsignificant 24-mL numerical FEV1 increase was shown in the valaciclovir group (difference, -44 mL [95% CI, -150 to 62 mL]; P = .41). However, a reduction in sputum white cell count was noted in the valaciclovir group compared with the placebo group (difference, 2.89 [95% CI, 1.5 × 106-7.4 × 106]; P = .003). INTERPRETATION: Valaciclovir is safe and effective for EBV suppression in COPD and may attenuate the sputum inflammatory cell infiltrate. The findings from the current study provide support for a larger trial to evaluate long-term clinical outcomes. TRIAL REGISTRY: ClinicalTrials.gov; No.: NCT03699904; URL: www. CLINICALTRIALS: gov.


Assuntos
Infecções por Vírus Epstein-Barr , Doença Pulmonar Obstrutiva Crônica , Humanos , Valaciclovir/uso terapêutico , Herpesvirus Humano 4 , Qualidade de Vida , Doença Pulmonar Obstrutiva Crônica/tratamento farmacológico , Método Duplo-Cego , Resultado do Tratamento
2.
Am J Respir Crit Care Med ; 205(7): 769-782, 2022 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-35073247

RESUMO

Rationale: Although the cysteine protease cathepsin S has been implicated in the pathogenesis of several inflammatory lung diseases, its role has not been examined in the context of acute respiratory distress syndrome, a condition that still lacks specific and effective pharmacological treatments. Objectives: To characterize the status of cathepsin S in acute lung inflammation and examine the role of cathepsin S in disease pathogenesis. Methods: Human and mouse model BAL fluid samples were analyzed for the presence and activity of cathepsin S and its endogenous inhibitors. Recombinant cathepsin S was instilled directly into the lungs of mice. The effects of cathepsin S knockout and pharmacological inhibition were examined in two models of acute lung injury. Protease-activated receptor-1 antagonism was used to test a possible mechanism for cathepsin S-mediated inflammation. Measurements and Main Results: Pulmonary cathepsin S concentrations and activity were elevated in acute respiratory distress syndrome, a phenotype possibly exacerbated by the loss of the endogenous antiprotease cystatin SN. Direct cathepsin S instillation into the lungs induced key pathologies of acute respiratory distress syndrome, including neutrophilia and alveolar leakage. Conversely, in murine models of acute lung injury, genetic knockdown and prophylactic or therapeutic inhibition of cathepsin S reduced neutrophil recruitment and protein leakage. Cathepsin S may partly mediate its pathogenic effects via protease-activated receptor-1, because antagonism of this receptor abrogated cathepsin S-induced airway inflammation. Conclusions: Cathepsin S contributes to acute lung injury and may represent a novel therapeutic target for acute respiratory distress syndrome.


Assuntos
Pneumonia , Síndrome do Desconforto Respiratório , Animais , Líquido da Lavagem Broncoalveolar , Catepsinas , Modelos Animais de Doenças , Humanos , Pulmão/patologia , Camundongos
3.
Crit Care Resusc ; 24(3): 251-258, 2022 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-38046206

RESUMO

Objective: To evaluate the performance of cystatin C as a prognostic and predictive marker in a trial of patients with acute respiratory distress syndrome (ARDS). Design, patients and setting: A retrospective analysis was performed on plasma samples from patients included in the HARP-2 (hydroxymethylglutaryl-CoA reductase inhibition with simvastatin in acute lung injury to reduce pulmonary dysfunction) trial - a multicentre, phase 2b trial carried out in general intensive care units across 40 hospitals in the United Kingdom and Ireland. Cystatin C concentrations in plasma obtained from 466 patients with ARDS (before they were randomly assigned in the trial) were quantified by ELISA (enzyme-linked immunosorbent assay). Results: In a univariate analysis, plasma cystatin C concentrations were significantly higher in patients with ARDS who did not survive past 28 days (odds ratio [OR], 1.39 [95% CI, 1.12-1.72]; P = 0.002). In a multivariate model adjusted for selected covariates, cystatin C concentrations remained higher among patients with ARDS who did not survive, although this did not reach statistical significance (OR, 1.28 [95% CI, 0.96-1.71]; P = 0.090). Cystatin C concentration was also significantly associated with hyperinflammatory ARDS (OR, 2.64 [95% CI, 1.83-3.89]; P < 0.001). In multivariate models adjusted for both cystatin C concentration and ARDS subphenotype, hyperinflammatory ARDS was prognostic for mortality (OR, 2.06 [95% CI, 1.16-3.64]; P = 0.013) but cystatin C concentration was not (OR, 1.16 [95% CI, 0.85-1.57]; P = 0.346). In a multivariate analysis, hyperinflammatory ARDS was predictive of a beneficial effect of simvastatin on mortality (OR, 2.05 [95% CI, 1.16-3.62]; P = 0.014) but cystatin C concentration was not (OR, 1.10 [95% CI, 0.77-1.56]; P = 0.614). Conclusion: The association between cystatin C concentration and mortality in ARDS may be dependent on inflammatory subphenotype. Cystatin C concentration does not appear to add to existing prognostic or predictive approaches.

4.
Int J Mol Sci ; 22(9)2021 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-34065111

RESUMO

Dysregulated protease activity has long been implicated in the pathogenesis of chronic lung diseases and especially in conditions that display mucus obstruction, such as chronic obstructive pulmonary disease, cystic fibrosis, and non-cystic fibrosis bronchiectasis. However, our appreciation of the roles of proteases in various aspects of such diseases continues to grow. Patients with muco-obstructive lung disease experience progressive spirals of inflammation, mucostasis, airway infection and lung function decline. Some therapies exist for the treatment of these symptoms, but they are unable to halt disease progression and patients may benefit from novel adjunct therapies. In this review, we highlight how proteases act as multifunctional enzymes that are vital for normal airway homeostasis but, when their activity becomes immoderate, also directly contribute to airway dysfunction, and impair the processes that could resolve disease. We focus on how proteases regulate the state of mucus at the airway surface, impair mucociliary clearance and ultimately, promote mucostasis. We discuss how, in parallel, proteases are able to promote an inflammatory environment in the airways by mediating proinflammatory signalling, compromising host defence mechanisms and perpetuating their own proteolytic activity causing structural lung damage. Finally, we discuss some possible reasons for the clinical inefficacy of protease inhibitors to date and propose that, especially in a combination therapy approach, proteases represent attractive therapeutic targets for muco-obstructive lung diseases.


Assuntos
Imunidade nas Mucosas , Pneumopatias/etiologia , Pneumopatias/metabolismo , Muco/metabolismo , Peptídeo Hidrolases/metabolismo , Animais , Doença Crônica , Cílios/imunologia , Cílios/metabolismo , Suscetibilidade a Doenças , Humanos , Transporte de Íons , Pneumopatias/diagnóstico , Mucosa Respiratória/imunologia , Mucosa Respiratória/metabolismo , Mucosa Respiratória/patologia , Transdução de Sinais
5.
Front Med (Lausanne) ; 7: 589553, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33195353

RESUMO

Acute respiratory distress syndrome (ARDS) is associated with increased morbidity and mortality in the elderly population (≥65 years of age). Additionally, age is widely reported as a risk factor for the development of ARDS. However, the underlying pathophysiological mechanisms behind the increased risk of developing, and increased severity of, ARDS in the elderly population are not fully understood. This is compounded by the significant heterogeneity observed in patients with ARDS. With an aging population worldwide, a better understanding of these mechanisms could facilitate the development of therapies to improve outcomes in this population. In this review, the current clinical evidence of age as a risk factor and prognostic indicator in ARDS and the potential underlying mechanisms that may contribute to these factors are outlined. In addition, research on age-dependent treatment options and biomarkers, as well as future prospects for targeting these underlying mechanisms, are discussed.

6.
Int J Mol Sci ; 21(17)2020 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-32887484

RESUMO

The arrival of cystic fibrosis transmembrane conductance regulator (CFTR) modulators as a new class of treatment for cystic fibrosis (CF) in 2012 represented a pivotal advance in disease management, as these small molecules directly target the upstream underlying protein defect. Further advancements in the development and scope of these genotype-specific therapies have been transformative for an increasing number of people with CF (PWCF). Despite clear improvements in CFTR function and clinical endpoints such as lung function, body mass index (BMI), and frequency of pulmonary exacerbations, current evidence suggests that CFTR modulators do not prevent continued decline in lung function, halt disease progression, or ameliorate pathogenic organisms in those with established lung disease. Furthermore, it remains unknown whether their restorative effects extend to dysfunctional CFTR expressed in phagocytes and other immune cells, which could modulate airway inflammation. In this review, we explore the effects of CFTR modulators on airway inflammation, infection, and their influence on the impaired pulmonary host defences associated with CF lung disease. We also consider the role of inflammation-directed therapies in light of the widespread clinical use of CFTR modulators and identify key areas for future research.


Assuntos
Anti-Inflamatórios/uso terapêutico , Regulador de Condutância Transmembrana em Fibrose Cística/metabolismo , Fibrose Cística/tratamento farmacológico , Inflamação/tratamento farmacológico , Terapia de Alvo Molecular , Mucosa Respiratória/efeitos dos fármacos , Animais , Fibrose Cística/imunologia , Fibrose Cística/patologia , Regulador de Condutância Transmembrana em Fibrose Cística/química , Humanos , Inflamação/imunologia , Inflamação/patologia , Mucosa Respiratória/imunologia , Mucosa Respiratória/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA