Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Mol Breed ; 44(5): 36, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38745882

RESUMO

Flowering plants exhibit a wide range of sexual reproduction systems, with the majority being hermaphroditic. However, some plants, such as Actinidia arguta (kiwiberry), have evolved into dioecious species with distinct female and male vines. In this study, we investigated the flower load and growth habits of female kiwiberry genotypes to identify the genetic basis of high yield with low maintenance requirements. Owing to the different selection approaches between female and male genotypes, we further extended our study to male kiwiberry genotypes. By combining both investigations, we present a novel breeding tool for dioecious crops. A population of A. arguta seedlings was phenotyped for flower load traits, in particular the proportion of non-floral shoots, proportion of floral shoots, and average number of flowers per floral shoot. Quantitative trait locus (QTL) mapping was used to analyse the genetic basis of these traits. We identified putative QTLs on chromosome 3 associated with flower-load traits. A pleiotropic effect of the male-specific region of the Y chromosome (MSY) on chromosome 3 affecting flower load-related traits between female and male vines was observed in an A. arguta breeding population. Furthermore, we utilized Genomic Best Linear Unbiased Prediction (GBLUP) to predict breeding values for the quantitative traits by leveraging genomic data. This approach allowed us to identify and select superior genotypes. Our findings contribute to the understanding of flowering and fruiting dynamics in Actinidia species, providing insights for kiwiberry breeding programs aiming to improve yield through the utilization of genomic methods and trait mapping. Supplementary Information: The online version contains supplementary material available at 10.1007/s11032-024-01476-7.

2.
Mol Breed ; 43(10): 75, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37868140

RESUMO

In dioecious crops such as Actinidia arguta (kiwiberries), some of the main challenges when breeding for fruit characteristics are the selection of potential male parents and the long juvenile period. Currently, breeding values of male parents are estimated through progeny tests, which makes the breeding of new kiwiberry cultivars time-consuming and costly. The application of best linear unbiased prediction (BLUP) would allow direct estimation of sex-related traits and speed up kiwiberry breeding. In this study, we used a linear mixed model approach to estimate narrow sense heritability for one vine-related trait and five fruit-related traits for two incomplete factorial crossing designs. We obtained BLUPs for all genotypes, taking into consideration whether the relationship was pedigree-based or marker-based. Owing to the high cost of genome sequencing, it is important to understand the effects of different sources of relationship matrices on estimating breeding values across a breeding population. Because of the increasing implementation of genomic selection in crop breeding, we compared the effects of incorporating different sources of information in building relationship matrices and ploidy levels on the accuracy of BLUPs' heritability and predictive ability. As kiwiberries are autotetraploids, multivalent chromosome formation and occasionally double reduction can occur during meiosis, and this can affect the accuracy of prediction. This study innovates the breeding programme of autotetraploid kiwiberries. We demonstrate that the accuracy of BLUPs of male siblings, without phenotypic observations, strongly improved when a tetraploid marker-based relationship matrix was used rather than parental BLUPs and female siblings with phenotypic observations. Supplementary Information: The online version contains supplementary material available at 10.1007/s11032-023-01419-8.

3.
Front Plant Sci ; 13: 1095359, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36699852

RESUMO

Increasing water-soluble carbohydrate (WSC) content in white clover is important for improving nutritional quality and reducing environmental impacts from pastoral agriculture. Elucidation of genes responsible for foliar WSC variation would enhance genetic improvement by enabling molecular breeding approaches. The aim of the present study was to identify single nucleotide polymorphisms (SNPs) associated with variation in foliar WSC in white clover. A set of 935 white clover individuals, randomly sampled from five breeding pools selectively bred for divergent (low or high) WSC content, were assessed with 14,743 genotyping-by-sequencing SNPs, using three outlier detection methods: PCAdapt, BayeScan and KGD-FST. These analyses identified 33 SNPs as discriminating between high and low WSC populations and putatively under selection. One SNP was located in the intron of ERD6-like 4, a gene coding for a sugar transporter located on the vacuole membrane. A genome-wide association study using a subset of 605 white clover individuals and 5,757 SNPs, identified a further 12 SNPs, one of which was associated with a starch biosynthesis gene, glucose-1-phosphate adenylyltransferase, glgC. Our results provide insight into genomic regions underlying WSC accumulation in white clover, identify candidate genomic regions for further functional validation studies, and reveal valuable information for marker-assisted or genomic selection in white clover.

4.
Plants (Basel) ; 10(11)2021 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-34834769

RESUMO

This work aims to understand how Vitis vinifera (Chardonnay) vines prioritise the export and distribution of recently fixed photoassimilate between root tissue, fruit, and defence, following the elicitation of a defence response. Jasmonic acid (JA) and its methyl ester, MeJA, are endogenous plant hormones, known collectively as jasmonates, that have signalling roles in plant defence and consequently are often used to prime plant defence systems. Here, we use exogenous jasmonate application to mature source leaves of Chardonnay grapevines to elucidate the prioritisation strategy of carbon allocation between plant defence and growth. Our results demonstrate that jasmonate application to Chardonnay leaves can elicit a defence response to Botrytis cinerea, but the effect was localised to the jasmonate-treated area. We found no evidence of a systemic defence response in non-treated mature leaves or young growing tissue. JA application reduced the photosynthetic rate of the treated leaf and reduced the export rate of recently fixed carbon-11 from the leaf. Following JA application, a greater proportion of available recently fixed carbon was allocated to the roots, suggesting an increase in sink strength of the roots. Relative sink strength of the berries did not change; however, an increase in berry sugar was observed seven days after JA treatment. We conclude that the data provide evidence for a "high sugar resistance" model in the mature treated leaves of the vine, since the export of carbon was reduced to ensure an elevated defence response in the treated leaf. The increase in berry sugar concentration seven days after treatment can be explained by the initial prioritisation of a greater portion of the exported carbon to storage in the roots, making it available for remobilisation to the berries once the challenge to defence had passed.

5.
J Chem Ecol ; 46(7): 642-643, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32219629

RESUMO

The original version of this article unfortunately contained a mistake. There is a mistake in the affiliation section and Figure 6. The correct affiliation and Figure 6 are shown here.

6.
J Chem Ecol ; 46(4): 410-421, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32125583

RESUMO

The symbiotic Epichloë festucae var. lolii endophyte produces alkaloids which can provide its host grass, perennial ryegrass (Lolium perenne L), with a selective advantage in both natural and agricultural managed ecosystems. This study focuses on understanding the alkaloid concentrations that occur in endophyte-infected perennial ryegrass during the early establishment phase. In a glasshouse experiment fungal alkaloid concentrations (peramine, lolitrem B, ergovaline, and epoxy-janthitrems) were measured in perennial ryegrass seedlings infected with E. festucae var. lolii proprietary strains AR1, AR37, NEA2, and NZ common toxic for 69 days after sowing. The endophyte becomes metabolically active, starting alkaloid production, as early as 6 days after sowing. Alkaloid concentrations peaked in 8- to 10- day-old seedlings due to a seedling growth slowdown. This study provides data showing that the loss of insect protection in endophyte-infected seedlings is linked to a reduction in chemical defence after seed-stored, maternally synthesised alkaloids are diluted by seedling dry matter accumulation.


Assuntos
Alcaloides/metabolismo , Endófitos/metabolismo , Epichloe/metabolismo , Lolium/crescimento & desenvolvimento , Lolium/microbiologia , Plântula/crescimento & desenvolvimento , Plântula/microbiologia , Simbiose
7.
PLoS One ; 14(5): e0216072, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31042730

RESUMO

Commercial diets high in animal protein and fat are increasingly being developed for pets, however little is understood about the impacts of feeding such diets to domestic cats. The carbohydrate content of these diets is typically low, and dietary fibre is often not included. Dietary fibre is believed to be important in the feline gastrointestinal tract, promoting stool formation and providing a substrate for the hindgut microbiome. Therefore, we aimed to determine the effects of adding plant-based dietary fibre to a high animal protein and fat diet. Twelve domestic short hair cats were fed three complete and balanced diets in a cross-over design for blocks of 21 days: raw meat (Raw), raw meat plus fibre (2%, 'as is' inclusion of inulin and cellulose; Raw+Fibre) and a commercially available Kibble diet. A commercially available canned diet was fed for 21 days as a washout phase. Apparent macronutrient digestibility, faecal output, score, pH, organic acid concentrations and bacteriome profiles were determined. Diet significantly affected all faecal parameters measured. The addition of dietary fibre to the raw meat diet was found to reduce apparent macronutrient digestibility, increase faecal output, pH and score. Thirty one bacterial taxa were significantly affected by diet. Prevotella was found to dominate in the Kibble diet, Clostridium and Fusobacterium in the Raw diet, and Prevotella and a group of unclassified Peptostreptococcaceae in the Raw+Fibre diet. Our results show that diets of different macronutrient proportions can strongly influence the faecal microbiome composition and metabolism, as shown by altered organic acid concentrations and faecal pH, in the domestic cat. The addition of 2% of each fibre to the Raw diet shifted faecal parameters closer to those produced by feeding a Kibble diet. These results provide a basis for further research assessing raw red meat diets to domestic cats.


Assuntos
Ração Animal/análise , Dieta Hiperlipídica/veterinária , Dieta Rica em Proteínas/veterinária , Fenômenos Fisiológicos da Nutrição Animal , Animais , Gatos/metabolismo , Dieta/veterinária , Fibras na Dieta/análise , Fezes/química , Feminino , Masculino , Carne/análise , Microbiota/fisiologia , Carne Vermelha
8.
Mol Plant Microbe Interact ; 32(10): 1324-1335, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31107632

RESUMO

In ascomycetes and basidiomycetes, iron-responsive GATA-type transcriptional repressors are involved in regulating iron homeostasis, notably to prevent iron toxicity through control of iron uptake. To date, it has been unknown whether this iron regulator contributes toward mutualistic endosymbiosis of microbes with plants, a system where the endophyte must function within the constraints of an in-host existence, including a dependency on the host for nutrient acquisition. Functional characterization of one such protein, SreA from Epichloë festucae, a fungal endosymbiont of cool-season grasses, indicates that regulation of iron homeostasis processes is important for symbiotic maintenance. The deletion of the sreA gene (ΔsreA) led to iron-dependent aberrant hyphal growth and the gradual loss of endophyte hyphae from perennial ryegrass. SreA negatively regulates the siderophore biosynthesis and high-affinity iron uptake systems of E. festucae, similar to other fungi, resulting in iron accumulation in mutants. Our evidence suggests that SreA is involved in the processes that moderate Epichloë iron acquisition from the plant apoplast, because overharvesting of iron in ΔsreA mutants was detected as premature chlorosis of the host using a hydroponic plant growth assay. E. festucae appears to have a tightly regulated iron management system, involving SreA that balances endophyte growth with its survival and prevents overcompetition with the host for iron in the intercellular niche, thus promoting mutualistic associations. Mutations that interfere with Epichloë iron management negatively affect iron-dependent fungal growth and destabilize mutualistic Epichloë -ryegrass associations.


Assuntos
Epichloe , Fatores de Transcrição GATA , Lolium , Simbiose , Epichloe/genética , Proteínas Fúngicas/genética , Fatores de Transcrição GATA/genética , Fatores de Transcrição GATA/metabolismo , Ferro/metabolismo , Lolium/microbiologia , Mutação , Simbiose/genética
9.
Anaerobe ; 54: 31-38, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30055268

RESUMO

Sharpea and Kandleria are associated with rumen samples from low-methane-emitting sheep. Four strains of each genus were studied in culture, and the genomes of nine strains were analysed, to understand the physiology of these bacteria. All eight cultures grew equally well with d-glucose, d-fructose, d-galactose, cellobiose, and sucrose supplementation. d-Lactate was the major end product, with small amounts of the mixed acid fermentation products formate, acetate and ethanol. Genes encoding the enzymes necessary for this fermentation pattern were found in the genomes of four strains of Sharpea and five of Kandleria. Strains of Sharpea produced traces of hydrogen gas in pure culture, but strains of Kandleria did not. This was consistent with finding that Sharpea, but not Kandleria, genomes contained genes coding for hydrogenases. It was speculated that, in co-culture with a methanogen, Sharpea and Kandleria might change their fermentation pattern from a predominately homolactic to a predominately mixed acid fermentation, which would result in a decrease in lactate production and an increase in formation of acetate and perhaps ethanol. However, Sharpea and Kandleria did not change their fermentation products when co-cultured with Methanobrevibacter olleyae, a methanogen that can use both hydrogen and formate, and lactate remained the major end product. The results of this study therefore support a hypothesis that explains the link between lower methane yields and larger populations of Sharpea and Kandleria in the rumens of sheep.


Assuntos
Firmicutes/metabolismo , Ácido Láctico/metabolismo , Lactobacillales/metabolismo , Metano/metabolismo , Methanobrevibacter/crescimento & desenvolvimento , Rúmen/microbiologia , Animais , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Técnicas de Cocultura , Fermentação , Firmicutes/genética , Firmicutes/crescimento & desenvolvimento , Firmicutes/isolamento & purificação , Hidrogênio/metabolismo , Hidrogenase/genética , Hidrogenase/metabolismo , Lactobacillales/genética , Lactobacillales/crescimento & desenvolvimento , Lactobacillales/isolamento & purificação , Methanobrevibacter/metabolismo , Ovinos
10.
Nutrients ; 9(12)2017 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-29236034

RESUMO

Little is known about how milk proteins affect gastrointestinal (GI) transit, particularly for the elderly, in whom digestion has been observed to be slowed. We tested the hypothesis that GI transit is faster for whey than for casein and that this effect is accentuated with hydrolysates, similar to soy. Adult male rats (18 months old) were fed native whey or casein, hydrolyzed whey (WPH) or casein (CPH), hydrolyzed blend (HB; 60% whey:40% casein), or hydrolyzed soy for 14 days then treated with loperamide, prucalopride, or vehicle-control for 7 days. X-ray imaging tracked bead-transit for: gastric emptying (GE; 4 h), small intestine (SI) transit (9 h), and large intestine (LI) transit (12 h). GE for whey was 33 ± 12% faster than that for either casein or CPH. SI transit was decreased by 37 ± 9% for casein and 24 ± 6% for whey compared with hydrolyzed soy, and persisted for casein at 12 h. Although CPH and WPH did not alter transit compared with their respective intact counterparts, fecal output was increased by WPH. Slowed transit by casein was reversed by prucalopride (9-h), but not loperamide. However, rapid GE and slower SI transit for the HB compared with intact forms were inhibited by loperamide. The expected slower GI transit for casein relative to soy provided a comparative benchmark, and opioid receptor involvement was corroborated. Our findings provide new evidence that whey slowed SI transit compared with soy, independent of GE. Increased GI transit from stomach to colon for the HB compared with casein suggests that including hydrolyzed milk proteins in foods may benefit those with slowed intestinal transit.


Assuntos
Caseínas/farmacologia , Esvaziamento Gástrico/efeitos dos fármacos , Trânsito Gastrointestinal/efeitos dos fármacos , Proteínas do Soro do Leite/farmacologia , Animais , Hidrólise , Intestino Grosso/efeitos dos fármacos , Intestino Grosso/fisiologia , Intestino Delgado/efeitos dos fármacos , Intestino Delgado/fisiologia , Masculino , Ratos , Ratos Sprague-Dawley
11.
Am J Physiol Gastrointest Liver Physiol ; 313(1): G62-G72, 2017 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-28408641

RESUMO

Altered gastric accommodation and intestinal morphology suggest impaired gastrointestinal (GI) transit may occur in the Wistar-Kyoto (WKY) rat strain, as common in stress-associated functional GI disorders. Because changes in GI transit can alter microbiota composition, we investigated whether these are altered in WKY rats compared with the resilient Sprague-Dawley (SD) rats under basal conditions and characterized plasma lipid and metabolite differences. Bead transit was tracked by X-ray imaging to monitor gastric emptying (4 h), small intestine (SI) transit (9 h), and large intestine transit (12 h). Plasma extracts were analyzed by lipid and hydrophilic interaction liquid chromatography (HILIC) and liquid chromatography-mass spectrometry (LC-MS). Cecal microbial composition was determined by Illumina MiSeq 16S rRNA amplicon sequencing and analysis using the QIIME pipeline. Stomach retention of beads was 77% for WKY compared with 35% for SD rats. GI transit was decreased by 34% (9 h) and 21% (12 h) in WKY compared with SD rats. Excluding stomach retention, transiting beads moved 29% further along the SI over 4-9 h for WKY compared with SD rats. Cecal Ruminococcus, Roseburia, and unclassified Lachnospiraceae genera were less abundant in WKY rats, whereas the minor taxa Dorea, Turicibacter, and Lactobacillus were higher. Diglycerides, triglycerides, phosphatidyl-ethanolamines, and phosphatidylserine were lower in WKY rats, whereas cholesterol esters and taurocholic acids were higher. The unexpected WKY rat phenotype of delayed gastric emptying, yet rapid SI transit, was associated with altered lipid and metabolite profiles. The delayed gastric emptying of the WKY phenotype suggests this rat strain may be useful as a model for gastroparesis.NEW & NOTEWORTHY This study reveals that the stress-prone Wistar-Kyoto rat strain has a baseline physiology of gastroparesis and rapid small intestine transit, together with metabolic changes consistent with lipid metabolism-associated dysbiosis, compared with nonstress-prone rats. This suggests that the Wistar-Kyoto rat strain may be an appropriate animal model for gastroparesis.


Assuntos
Trato Gastrointestinal/fisiologia , Trânsito Gastrointestinal/fisiologia , Gastroparesia , Metabolismo dos Lipídeos , Animais , Peso Corporal , Cromatografia Líquida/métodos , Corticosterona/sangue , Modelos Animais de Doenças , Esvaziamento Gástrico/fisiologia , Trato Gastrointestinal/microbiologia , Masculino , Espectrometria de Massas , Metabolômica , Ratos , Ratos Endogâmicos WKY , Ratos Sprague-Dawley
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA