Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Compr Physiol ; 14(1): 5243-5267, 2023 12 29.
Artigo em Inglês | MEDLINE | ID: mdl-38158370

RESUMO

Type 2 diabetes (T2D) affects more than 32.3 million individuals in the United States, creating an economic burden of nearly $966 billion in 2021. T2D results from a combination of insulin resistance and inadequate insulin secretion from the pancreatic ß cell. However, genetic and physiologic data indicate that defects in ß cell function are the chief determinant of whether an individual with insulin resistance will progress to a diagnosis of T2D. The subcellular organelles of the insulin secretory pathway, including the endoplasmic reticulum, Golgi apparatus, and secretory granules, play a critical role in maintaining the heavy biosynthetic burden of insulin production, processing, and secretion. In addition, the mitochondria enable the process of insulin release by integrating the metabolism of nutrients into energy output. Advanced imaging techniques are needed to determine how changes in the structure and composition of these organelles contribute to the loss of insulin secretory capacity in the ß cell during T2D. Several microscopy techniques, including electron microscopy, fluorescence microscopy, and soft X-ray tomography, have been utilized to investigate the structure-function relationship within the ß cell. In this overview article, we will detail the methodology, strengths, and weaknesses of each approach. © 2024 American Physiological Society. Compr Physiol 14:5243-5267, 2024.


Assuntos
Diabetes Mellitus Tipo 2 , Resistência à Insulina , Células Secretoras de Insulina , Humanos , Diabetes Mellitus Tipo 2/metabolismo , Insulina/metabolismo , Retículo Endoplasmático/metabolismo
2.
Diabetologia ; 66(11): 2042-2061, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37537395

RESUMO

AIMS/HYPOTHESIS: Increased circulating levels of incompletely processed insulin (i.e. proinsulin) are observed clinically in type 1 and type 2 diabetes. Previous studies have suggested that Ca2+ signalling within beta cells regulates insulin processing and secretion; however, the mechanisms that link impaired Ca2+ signalling with defective insulin maturation remain incompletely understood. METHODS: We generated mice with beta cell-specific sarcoendoplasmic reticulum Ca2+ ATPase-2 (SERCA2) deletion (ßS2KO mice) and used an INS-1 cell line model of SERCA2 deficiency. Whole-body metabolic phenotyping, Ca2+ imaging, RNA-seq and protein processing assays were used to determine how loss of SERCA2 impacts beta cell function. To test key findings in human model systems, cadaveric islets were treated with diabetogenic stressors and prohormone convertase expression patterns were characterised. RESULTS: ßS2KO mice exhibited age-dependent glucose intolerance and increased plasma and pancreatic levels of proinsulin, while endoplasmic reticulum (ER) Ca2+ levels and glucose-stimulated Ca2+ synchronicity were reduced in ßS2KO islets. Islets isolated from ßS2KO mice and SERCA2-deficient INS-1 cells showed decreased expression of the active forms of the proinsulin processing enzymes PC1/3 and PC2. Additionally, immunofluorescence staining revealed mis-location and abnormal accumulation of proinsulin and proPC2 in the intermediate region between the ER and the Golgi (i.e. the ERGIC) and in the cis-Golgi in beta cells of ßS2KO mice. Treatment of islets from human donors without diabetes with high glucose and palmitate concentrations led to reduced expression of the active forms of the proinsulin processing enzymes, thus phenocopying the findings observed in ßS2KO islets and SERCA2-deficient INS-1 cells. Similar findings were observed in wild-type mouse islets treated with brefeldin A, a compound that perturbs ER-to-Golgi trafficking. CONCLUSIONS/INTERPRETATION: Taken together, these data highlight an important link between ER Ca2+ homeostasis and proinsulin processing in beta cells. Our findings suggest a model whereby chronic ER Ca2+ depletion due to SERCA2 deficiency impairs the spatial regulation of prohormone trafficking, processing and maturation within the secretory pathway. DATA AVAILABILITY: RNA-seq data have been deposited in the Gene Expression Omnibus (GEO; accession no.: GSE207498).


Assuntos
Diabetes Mellitus Tipo 2 , Células Secretoras de Insulina , Ilhotas Pancreáticas , Camundongos , Humanos , Animais , Proinsulina/genética , Proinsulina/metabolismo , Células Secretoras de Insulina/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático/genética , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático/metabolismo , Insulina/metabolismo , Glucose/metabolismo , Ilhotas Pancreáticas/metabolismo
3.
Diabetes ; 72(10): 1433-1445, 2023 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-37478155

RESUMO

Altered endoplasmic reticulum (ER) Ca2+ signaling has been linked with ß-cell dysfunction and diabetes development. Store-operated Ca2+ entry replenishes ER Ca2+ through reversible gating of plasma membrane Ca2+ channels by the ER Ca2+ sensor, stromal interaction molecule 1 (STIM1). For characterization of the in vivo impact of STIM1 loss, mice with ß-cell-specific STIM1 deletion (STIM1Δß mice) were generated and challenged with high-fat diet. Interestingly, ß-cell dysfunction was observed in female, but not male, mice. Female STIM1Δß mice displayed reductions in ß-cell mass, a concomitant increase in α-cell mass, and reduced expression of markers of ß-cell maturity, including MafA and UCN3. Consistent with these findings, STIM1 expression was inversely correlated with HbA1c levels in islets from female, but not male, human organ donors. Mechanistic assays demonstrated that the sexually dimorphic phenotype observed in STIM1Δß mice was due, in part, to loss of signaling through the noncanonical 17-ß estradiol receptor (GPER1), as GPER1 knockdown and inhibition led to a similar loss of expression of ß-cell maturity genes in INS-1 cells. Together, these data suggest that STIM1 orchestrates pancreatic ß-cell function and identity through GPER1-mediated estradiol signaling. ARTICLE HIGHLIGHTS: Store-operated Ca2+ entry replenishes endoplasmic reticulum (ER) Ca2+ through reversible gating of plasma membrane Ca2+ channels by the ER Ca2+ sensor, stromal interaction molecule 1 (STIM1). ß-Cell-specific deletion of STIM1 results in a sexually dimorphic phenotype, with ß-cell dysfunction and loss of identity in female but not male mice. Expression of the noncanonical 17-ß estradiol receptor (GPER1) is decreased in islets of female STIM1Δß mice, and modulation of GPER1 levels leads to alterations in expression of ß-cell maturity genes in INS-1 cells.


Assuntos
Canais de Cálcio , Proteínas de Membrana , Animais , Camundongos , Feminino , Humanos , Proteínas de Membrana/metabolismo , Canais de Cálcio/metabolismo , Molécula 1 de Interação Estromal/genética , Molécula 1 de Interação Estromal/metabolismo , Cálcio/metabolismo , Receptores de Estradiol/metabolismo , Receptor alfa de Estrogênio/metabolismo , Sinalização do Cálcio , Proteínas de Ligação ao GTP/metabolismo
4.
EBioMedicine ; 87: 104379, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36463755

RESUMO

BACKGROUND: Stress responses within the ß cell have been linked with both increased ß cell death and accelerated immune activation in type 1 diabetes (T1D). At present, information on the timing and scope of these responses as well as disease-related changes in islet ß cell protein expression during T1D development is lacking. METHODS: Data independent acquisition-mass spectrometry was performed on islets collected longitudinally from NOD mice and NOD-SCID mice rendered diabetic through T cell adoptive transfer. FINDINGS: In islets collected from female NOD mice at 10, 12, and 14 weeks of age, we found a time-restricted upregulation of proteins involved in stress mitigation and maintenance of ß cell function, followed by loss of expression of protective proteins that heralded diabetes onset. EIF2 signalling and the unfolded protein response, mTOR signalling, mitochondrial function, and oxidative phosphorylation were commonly modulated pathways in both NOD mice and NOD-SCID mice rendered acutely diabetic by T cell adoptive transfer. Protein disulphide isomerase A1 (PDIA1) was upregulated in NOD islets and pancreatic sections from human organ donors with autoantibody positivity or T1D. Moreover, PDIA1 plasma levels were increased in pre-diabetic NOD mice and in the serum of children with recent-onset T1D compared to non-diabetic controls. INTERPRETATION: We identified a core set of modulated pathways across distinct mouse models of T1D and identified PDIA1 as a potential human biomarker of ß cell stress in T1D. FUNDING: NIH (R01DK093954, DK127308, U01DK127786, UC4DK104166, R01DK060581, R01GM118470, and 5T32DK101001-09). VA Merit Award I01BX001733. JDRF (2-SRA-2019-834-S-B, 2-SRA-2018-493-A-B, 3-PDF-20016-199-A-N, 5-CDA-2022-1176-A-N, and 3-PDF-2017-385-A-N).


Assuntos
Diabetes Mellitus Tipo 1 , Ilhotas Pancreáticas , Animais , Criança , Feminino , Humanos , Camundongos , Biomarcadores/metabolismo , Ilhotas Pancreáticas/metabolismo , Camundongos Endogâmicos NOD , Camundongos SCID , Isomerases de Dissulfetos de Proteínas/metabolismo , Proteômica , Células Secretoras de Insulina
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA