Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
ACS Chem Biol ; 17(4): 930-940, 2022 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-35362960

RESUMO

3-Thiaglutamate is a recently identified amino acid analog originating from cysteine. During its biosynthesis, cysteinyl-tRNA is first enzymatically appended to the C-terminus of TglA, a 50-residue ribosomally translated peptide scaffold. After hydrolytic removal of the tRNA, this cysteine residue undergoes modification on the scaffold before eventual proteolysis of the nascent 3-thiaglutamyl residue to release 3-thiaglutamate and regenerate TglA. One of the modifications of TglACys requires a complex of two polypeptides, TglH and TglI, which uses nonheme iron and O2 to catalyze the removal of the peptidyl-cysteine ß-methylene group, oxidation of this Cß atom to formate, and reattachment of the thiol group to the α carbon. Herein, we use in vitro transcription-coupled translation and expressed protein ligation to characterize the role of the TglA scaffold in TglHI recognition and determine the specificity of TglHI with respect to the C-terminal residues of its substrate TglACys. The results of these experiments establish a synthetically accessible TglACys fragment sufficient for modification by TglHI and identify the l-selenocysteine analog of TglACys, TglASec, as an inhibitor of TglHI. These insights as well as a predicted structure and native mass spectrometry data set the stage for deeper mechanistic investigation of the complex TglHI-catalyzed reaction.


Assuntos
Cisteína , Selenocisteína , Catálise , Cisteína/metabolismo , Oxirredução , Peptídeos/química , Especificidade por Substrato
2.
Biochemistry ; 60(20): 1587-1596, 2021 05 25.
Artigo em Inglês | MEDLINE | ID: mdl-33942609

RESUMO

Methylcobalamin-dependent radical S-adenosylmethionine (SAM) enzymes methylate non-nucleophilic atoms in a range of substrates. The mechanism of the methyl transfer from cobalt to the receiving atom is still mostly unresolved. Here we determine the stereochemical course of this process at the methyl group during the biosynthesis of the clinically used antibiotic fosfomycin. In vitro reaction of the methyltransferase Fom3 using SAM labeled with 1H, 2H, and 3H in a stereochemically defined manner, followed by chemoenzymatic conversion of the Fom3 product to acetate and subsequent stereochemical analysis, shows that the overall reaction occurs with retention of configuration. This outcome is consistent with a double-inversion process, first in the SN2 reaction of cob(I)alamin with SAM to form methylcobalamin and again in a radical transfer of the methyl group from methylcobalamin to the substrate. The methods developed during this study allow high-yield in situ generation of labeled SAM and recombinant expression and purification of the malate synthase needed for chiral methyl analysis. These methods facilitate the broader use of in vitro chiral methyl analysis techniques to investigate the mechanisms of other novel enzymes.


Assuntos
Fosfomicina/biossíntese , Vitamina B 12/análogos & derivados , Vitamina B 12/metabolismo , Proteínas de Bactérias/metabolismo , Monofosfato de Citidina/metabolismo , Fosfomicina/química , Metilação , Metiltransferases/metabolismo , Organofosfonatos/metabolismo , S-Adenosilmetionina/química , Estereoisomerismo , Streptomyces/enzimologia , Vitamina B 12/química
4.
Elife ; 82019 01 14.
Artigo em Inglês | MEDLINE | ID: mdl-30638446

RESUMO

The secretion of peptides and proteins is essential for survival and ecological adaptation of bacteria. Dual-functional ATP-binding cassette transporters export antimicrobial or quorum signaling peptides in Gram-positive bacteria. Their substrates contain a leader sequence that is excised by an N-terminal peptidase C39 domain at a double Gly motif. We characterized the protease domain (LahT150) of a transporter from a lanthipeptide biosynthetic operon in Lachnospiraceae and demonstrate that this protease can remove the leader peptide from a diverse set of peptides. The 2.0 Å resolution crystal structure of the protease domain in complex with a covalently bound leader peptide demonstrates the basis for substrate recognition across the entire class of such transporters. The structural data also provide a model for understanding the role of leader peptide recognition in the translocation cycle, and the function of degenerate, non-functional C39-like domains (CLD) in substrate recruitment in toxin exporters in Gram-negative bacteria.


Assuntos
Proteínas de Bactérias/metabolismo , Clostridiales/metabolismo , Glicina/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Metaloendopeptidases/metabolismo , Motivos de Aminoácidos/genética , Sequência de Aminoácidos , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Transporte Biológico , Clostridiales/genética , Cristalografia por Raios X , Glicina/genética , Proteínas de Membrana Transportadoras/química , Proteínas de Membrana Transportadoras/genética , Metaloendopeptidases/química , Metaloendopeptidases/genética , Modelos Moleculares , Conformação Proteica , Homologia de Sequência de Aminoácidos
5.
Biochemistry ; 57(33): 4967-4971, 2018 08 21.
Artigo em Inglês | MEDLINE | ID: mdl-29969250

RESUMO

Fom3, the antepenultimate enzyme in the fosfomycin biosynthetic pathway in Streptomyces spp., is a class B cobalamin-dependent radical SAM methyltransferase that catalyzes methylation of (5'-cytidylyl)-2-hydroxyethylphosphonate (2-HEP-CMP) to form (5'-cytidylyl)-2-hydroxypropylphosphonate (2-HPP-CMP). Previously, the reaction of Fom3 with 2-HEP-CMP produced 2-HPP-CMP with mixed stereochemistry at C2. Mechanistic characterization has been challenging because of insoluble expression and poor cobalamin (B12) incorporation in Escherichia coli. Recently, soluble E. coli expression and incorporation of cobalamin into Fom3 were achieved by overexpression of the BtuCEDFB cobalamin uptake system. Herein, we use this new method to obtain Fom3 from Streptomyces wedmorensis. We show that the initiator 5'-deoxyadenosyl radical stereospecifically abstracts the pro- R hydrogen atom from the C2 position of 2-HEP-CMP and use the downstream enzymes FomD and Fom4 to demonstrate that our preparation of Fom3 produces only (2 S)-2-HPP-CMP. Additionally, we show that the added methyl group originates from SAM under multiple-turnover conditions, but the first turnover uses a methyl donor already present on the enzyme; furthermore, cobalamin isolated from Fom3 reaction mixtures contains methyl groups derived from SAM. These results are consistent with a model in which Fom3 catalyzes methyl transfer from SAM to cobalamin and the resulting methylcobalamin (MeCbl) is the ultimate methyl source for the reaction.


Assuntos
Antibacterianos/química , Proteínas de Bactérias/química , Fosfomicina/química , Metiltransferases/química , Vitamina B 12/química , Antibacterianos/biossíntese , Proteínas de Bactérias/genética , Proteínas de Bactérias/isolamento & purificação , Monofosfato de Citidina/análogos & derivados , Monofosfato de Citidina/química , Escherichia coli/genética , Fosfomicina/biossíntese , Radicais Livres/química , Metilação , Metiltransferases/genética , Metiltransferases/isolamento & purificação , Modelos Químicos , Organofosfonatos/química , S-Adenosilmetionina/química , Estereoisomerismo , Streptomyces/enzimologia
6.
Proc Natl Acad Sci U S A ; 113(34): 9446-50, 2016 08 23.
Artigo em Inglês | MEDLINE | ID: mdl-27506792

RESUMO

Lipoyl synthase (LipA) catalyzes the insertion of two sulfur atoms at the unactivated C6 and C8 positions of a protein-bound octanoyl chain to produce the lipoyl cofactor. To activate its substrate for sulfur insertion, LipA uses a [4Fe-4S] cluster and S-adenosylmethionine (AdoMet) radical chemistry; the remainder of the reaction mechanism, especially the source of the sulfur, has been less clear. One controversial proposal involves the removal of sulfur from a second (auxiliary) [4Fe-4S] cluster on the enzyme, resulting in destruction of the cluster during each round of catalysis. Here, we present two high-resolution crystal structures of LipA from Mycobacterium tuberculosis: one in its resting state and one at an intermediate state during turnover. In the resting state, an auxiliary [4Fe-4S] cluster has an unusual serine ligation to one of the irons. After reaction with an octanoyllysine-containing 8-mer peptide substrate and 1 eq AdoMet, conditions that allow for the first sulfur insertion but not the second insertion, the serine ligand dissociates from the cluster, the iron ion is lost, and a sulfur atom that is still part of the cluster becomes covalently attached to C6 of the octanoyl substrate. This intermediate structure provides a clear picture of iron-sulfur cluster destruction in action, supporting the role of the auxiliary cluster as the sulfur source in the LipA reaction and describing a radical strategy for sulfur incorporation into completely unactivated substrates.


Assuntos
Proteínas de Bactérias/química , Proteínas Ferro-Enxofre/química , Mycobacterium tuberculosis/química , S-Adenosilmetionina/química , Enxofre/química , Motivos de Aminoácidos , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Domínio Catalítico , Clonagem Molecular , Cristalografia por Raios X , Escherichia coli/genética , Escherichia coli/metabolismo , Expressão Gênica , Vetores Genéticos/química , Vetores Genéticos/metabolismo , Ferro/química , Ferro/metabolismo , Proteínas Ferro-Enxofre/genética , Proteínas Ferro-Enxofre/metabolismo , Cinética , Modelos Moleculares , Mycobacterium tuberculosis/enzimologia , Peptídeos/química , Peptídeos/metabolismo , Ligação Proteica , Conformação Proteica em alfa-Hélice , Conformação Proteica em Folha beta , Domínios e Motivos de Interação entre Proteínas , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , S-Adenosilmetionina/metabolismo , Especificidade por Substrato , Enxofre/metabolismo
7.
J Am Chem Soc ; 138(23): 7224-7, 2016 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-27224840

RESUMO

Quinolinic acid (QA) is a common intermediate in the biosynthesis of nicotinamide adenine dinucleotide (NAD(+)) and its derivatives in all organisms that synthesize the molecule de novo. In most prokaryotes, it is formed from the condensation of dihydroxyacetone phosphate (DHAP) and aspartate-enamine by the action of quinolinate synthase (NadA). NadA contains a [4Fe-4S] cluster cofactor with a unique, non-cysteinyl-ligated, iron ion (Fea), which is proposed to bind the hydroxyl group of a postulated intermediate in the last step of the reaction to facilitate a dehydration. However, direct evidence for this role in catalysis has yet to be provided. Herein, we present the structure of NadA in the presence of the product of its reaction, QA. We find that N1 and the C7 carboxylate group of QA ligate to Fea in a bidentate fashion, which is confirmed by Hyperfine Sublevel Correlation (HYSCORE) spectroscopy. This binding mode would place the C5 hydroxyl group of the postulated final intermediate distal to Fea and virtually incapable of coordinating to it. The structure shows that three strictly conserved amino acids, Glu198, Tyr109, and Tyr23, are in close proximity to the bound product. Substitution of these amino acids with Gln, Phe, and Phe, respectively, leads to complete loss of activity.


Assuntos
Complexos Multienzimáticos/química , Pyrococcus horikoshii/enzimologia , Ácido Quinolínico/química , Ácido Aspártico/química , Sítios de Ligação , Catálise , Fosfato de Di-Hidroxiacetona/química , Modelos Moleculares , Conformação Proteica
8.
Biochemistry ; 55(2): 373-81, 2016 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-26727048

RESUMO

Ribonucleotide reductases (RNRs) are responsible for all de novo biosynthesis of DNA precursors in nature by catalyzing the conversion of ribonucleotides to deoxyribonucleotides. Because of its essential role in cell division, human RNR is a target for a number of anticancer drugs in clinical use. Like other class Ia RNRs, human RNR requires both a radical-generation subunit (ß) and nucleotide-binding subunit (α) for activity. Because of their complex dependence on allosteric effectors, however, the active and inactive quaternary forms of many class Ia RNRs have remained in question. Here, we present an X-ray crystal structure of the human α subunit in the presence of inhibiting levels of dATP, depicting a ring-shaped hexamer (α6) where the active sites line the inner hole. Surprisingly, our small-angle X-ray scattering (SAXS) results indicate that human α forms a similar hexamer in the presence of ATP, an activating effector. In both cases, α6 is assembled from dimers (α2) without a previously proposed tetramer intermediate (α4). However, we show with SAXS and electron microscopy that at millimolar ATP, the ATP-induced α6 can further interconvert with higher-order filaments. Differences in the dATP- and ATP-induced α6 were further examined by SAXS in the presence of the ß subunit and by activity assays as a function of ATP or dATP. Together, these results suggest that dATP-induced α6 is more stable than the ATP-induced α6 and that stabilization of this ring-shaped configuration provides a mechanism to prevent access of the ß subunit to the active site of α.


Assuntos
Nucleotídeos de Desoxiadenina/química , Nucleotídeos de Desoxiadenina/metabolismo , Ribonucleotídeo Redutases/química , Ribonucleotídeo Redutases/metabolismo , Regulação Alostérica , Cristalografia por Raios X , Humanos , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Espalhamento a Baixo Ângulo , Difração de Raios X
9.
Proc Natl Acad Sci U S A ; 110(21): 8519-24, 2013 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-23650368

RESUMO

Arylsulfatases require a maturating enzyme to perform a co- or posttranslational modification to form a catalytically essential formylglycine (FGly) residue. In organisms that live aerobically, molecular oxygen is used enzymatically to oxidize cysteine to FGly. Under anaerobic conditions, S-adenosylmethionine (AdoMet) radical chemistry is used. Here we present the structures of an anaerobic sulfatase maturating enzyme (anSME), both with and without peptidyl-substrates, at 1.6-1.8 Å resolution. We find that anSMEs differ from their aerobic counterparts in using backbone-based hydrogen-bonding patterns to interact with their peptidyl-substrates, leading to decreased sequence specificity. These anSME structures from Clostridium perfringens are also the first of an AdoMet radical enzyme that performs dehydrogenase chemistry. Together with accompanying mutagenesis data, a mechanistic proposal is put forth for how AdoMet radical chemistry is coopted to perform a dehydrogenation reaction. In the oxidation of cysteine or serine to FGly by anSME, we identify D277 and an auxiliary [4Fe-4S] cluster as the likely acceptor of the final proton and electron, respectively. D277 and both auxiliary clusters are housed in a cysteine-rich C-terminal domain, termed SPASM domain, that contains homology to ~1,400 other unique AdoMet radical enzymes proposed to use [4Fe-4S] clusters to ligate peptidyl-substrates for subsequent modification. In contrast to this proposal, we find that neither auxiliary cluster in anSME bind substrate, and both are fully ligated by cysteine residues. Instead, our structural data suggest that the placement of these auxiliary clusters creates a conduit for electrons to travel from the buried substrate to the protein surface.


Assuntos
Proteínas de Bactérias/metabolismo , Clostridium perfringens/metabolismo , Radicais Livres/metabolismo , Glicina/metabolismo , Processamento de Proteína Pós-Traducional/fisiologia , S-Adenosilmetionina/metabolismo , Anaerobiose/fisiologia , Proteínas de Bactérias/genética , Clostridium perfringens/genética , Glicina/análogos & derivados , Glicina/genética , Oxirredução , Estrutura Terciária de Proteína , S-Adenosilmetionina/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA