Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Cancers (Basel) ; 16(3)2024 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-38339280

RESUMO

Over the past 20 years, there has been a paradigm shift in the care of patients with non-small cell lung cancer (NSCLC), who now have a range of systemic treatment options including targeted therapy, chemotherapy, immunotherapy (ICI), and antibody-drug conjugates (ADCs). A proportion of these cancers have single identifiable alterations in oncogenes that drive their proliferation and cancer progression, known as "oncogene-addiction". These "driver alterations" are identified in approximately two thirds of patients with lung adenocarcinomas, via next generation sequencing or other orthogonal tests. It was noted in the early clinical development of ICIs that patients with oncogene-addicted NSCLC may have differential responses to ICI. The toxicity signal for patients with oncogene-addicted NSCLC when treated with ICIs also seemed to differ depending on the alteration present and the specific targeted agent used. Developing a greater understanding of the underlying reasons for these clinical observations has become an important area of research in NSCLC. In this review, we analyze the efficacy and safety of ICI according to specific mutations, and consider possible future directions to mitigate safety concerns and improve the outcomes for patients with oncogene-addicted NSCLC.

2.
Ir J Med Sci ; 192(2): 541-548, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35449390

RESUMO

INTRODUCTION/AIMS: There are disparities in the availability of systemic anticancer therapies (SACTs) globally. We set out to investigate the cost and reimbursement of SACTs in the United Kingdom (UK) and the Republic of Ireland (ROI) in conjunction with efficacy and licensing authority decisions in the United States (US) and the European Union (EU). METHODS: We sought data pertaining to licensing in the EU, reimbursement in ROI/UK and cost/efficacy of SACTs licensed by the Food and Drug Administration (FDA) between January 2015 and May 2021. Independent samples t tests, chi-square test and Pearson's correlation were used for statistical analysis. RESULTS: We identified that the majority of FDA-approved regimens are licensed by the European Medicines Agency (EMA) (n = 91, 67.9%). However, only a minority of these are currently reimbursed in the UK (n = 60, 45%) or the ROI (n = 28, 21%) as of the 1st of May 2021. In addition, only a minority of regimens have demonstrated a statistically significant OS benefit (n = 54, 40%). There was no association between cost of regimens and either the presence (t = 0.846, p = 0.40) or duration of OS benefit (t = - 0.84, p = 0.64). CONCLUSIONS: Our study highlights that many licensed systemic anticancer treatments are not currently reimbursed in ROI/UK. The high cost of these medicines is independent of the presence of an OS benefit. Collaboration between regulatory agencies, governments and industry partners is needed to ensure health expenditure is directed towards the most effective treatments.


Assuntos
Neoplasias , Humanos , Estados Unidos , Irlanda , Reino Unido , Neoplasias/tratamento farmacológico , Resultado do Tratamento , United States Food and Drug Administration
3.
Front Med (Lausanne) ; 9: 1070828, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36619621

RESUMO

BRAF V600E oncogene mutations have been reported in multiple central nervous system (CNS) tumor types, and emerging evidence supports the use of targeted therapy in BRAF-mutated gliomas. BRAF oncogene mutations have been recently identified in Rosai-Dorfman disease (RDD)-a rare non-Langerhans cell histiocytosis. This series describes three patients from two neurosurgical centers in Ireland with BRAF V600E-mutated CNS tumors. The study participants include a 19-year-old male patient with ganglioglioma with anaplastic features, a 21-year-old male patient with CNS involvement of RDD, and a 28-year-old female patient with ganglioglioma with anaplastic features. Two patients received radiation with concurrent temozolomide before BRAF-targeted therapy. This case series describes clinical and radiological responses to BRAF-targeted therapy in BRAF V600E-mutated gliomas across multiple tumor grades and is only the second published report of response to targeted therapy in BRAF-mutated RDD. The durability of disease control with BRAF-targeted therapy was generally superior to that achieved with chemoradiation; one patient has experienced ongoing disease control for 5 years. The reported case of treatment response in BRAF-mutated RDD supports the strategy of genotyping and utilization of targeted therapy in this rare disease. The optimal sequencing of BRAF-targeted therapy in BRAF-mutated gliomas/glioneuronal tumors remains unclear, and further prospective studies are required to guide the use of genome-matched therapy in this patient population.

4.
Front Med (Lausanne) ; 8: 642318, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34513853

RESUMO

Objective: We aimed to use SARS-CoV-2 antibody tests to assess the asymptomatic seroprevalence of individuals in high-risk hospital cohorts who's previous COVID-19 exposure is unknown; staff, and patients requiring haemodialysis or chemotherapy after the first wave. Methods: In a single Center, study participants had five SARS-CoV-2 antibody tests done simultaneously; one rapid diagnostic test (RDT) (Superbio Colloidal Gold IgM/IgG), and four laboratory tests (Roche Elecsys® Anti-SARS-CoV-2 IgG [RE], Abbott Architect i2000SR IgG [AAr], Abbott Alinity IgG [AAl], and Abbott Architect IgM CMIA). To determine seroprevalence, only positive test results on laboratory assay were considered true positives. Results: There were 157 participants, of whom 103 (65.6%) were female with a median age of 50 years (range 19-90). The IgG component of the RDT showed a high number of false positives (n = 18), was inferior to the laboratory assays (p < 0.001 RDT vs. AAl/AAr, p < 0.001 RDT vs. RE), and had reduced specificity (85.5% vs. AAl/AAr, 87.2% vs. RE). Sero-concordance was 97.5% between IgG laboratory assays (RE vs. AAl/AAr). Specificity of the IgM component of the RDT compared to Abbott IgM CMIA was 95.4%. Ten participants had positivity in at least one laboratory assay, seven (9.9%) of which were seen in HCWs. Two (4.1%) hematology/oncology (H/O) patients and a single (2.7%) haemodialysis (HD) were asymptomatically seropositive. Asymptomatic seroprevalence of HCWs compared to patients was not significant (p = 0.105). Conclusion: HCWs (9.9%) had higher, although non-significant asymptomatic seroprevalence of SARS-CoV-2 antibodies compared to high-risk patients (H/O 4.1%, HD 2.7%). An IgM/IgG rapid diagnostic test was inferior to laboratory assays. Sero-concordance of 97.5% was found between IgG laboratory assays, RE vs. AAl/AAr.

5.
Ir J Med Sci ; 190(4): 1295-1301, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-33449331

RESUMO

BACKGROUND: The COVID-19 pandemic has resulted in radical changes in the delivery of healthcare worldwide. Our oncology service (at an Irish national cancer centre) rapidly transitioned to the use of telemedicine or virtual clinics (VC) to minimise potential risk of exposure to COVID-19 amongst an immunosuppressed, high-risk population. Our study aimed to evaluate the use of VC in this setting. METHODS: An 18-point questionnaire was designed to investigate the patient experience of VC during the COVID-19 pandemic in Ireland and compliance with guidelines developed in Ireland to conduct VC and the role of VC in the future. Questionnaires were distributed following the receipt of verbal consent from patients during the VC. Descriptive statistics were utilised for data analysis using SPSS®. RESULTS: One hundred and four patients returned completed surveys (n = 104/164, 63% response rate). Overall satisfaction levels were high with most patients (n = 58/100, 58%; no answer provided (NAP), n = 4) equally satisfied or nearly equally satisfied with VC in comparison to a usual clinic encounter. The majority of patients felt that there should be a role for VC in the future (n = 84/102, 82%; NAP, n = 2). The majority of patients (n = 61/99, 61%; NAP, n = 5) were very relieved to avoid a hospital visit due to perceived risk of potential exposure to COVID-19. CONCLUSION: The majority of oncology patients were satisfied with a VC encounter. VC may have a role in the future of medical care in Ireland post the COVID-19 pandemic.


Assuntos
COVID-19 , Telemedicina , Instituições de Assistência Ambulatorial , Humanos , Pandemias , SARS-CoV-2
6.
Oncogene ; 39(20): 4118-4131, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32235890

RESUMO

The genetically heterogeneous triple-negative breast cancer (TNBC) continues to be an intractable disease, due to lack of effective targeted therapies. Gene amplification is a major event in tumorigenesis. Genes with amplification-dependent expression are being explored as therapeutic targets for cancer treatment. In this study, we have applied Analytical Multi-scale Identification of Recurring Events analysis and transcript quantification in the TNBC genome across 222 TNBC tumors and identified 138 candidate genes with positive correlation in copy number gain (CNG) and gene expression. siRNA-based loss-of-function screen of the candidate genes has validated EGFR, MYC, ASAP1, IRF2BP2, and CCT5 genes as drivers promoting proliferation in different TNBC cells. MYC, ASAP1, IRF2BP2, and CCT5 display frequent CNG and concurrent expression over 2173 breast cancer tumors (cBioPortal dataset). More frequently are MYC and ASAP1 amplified in TNBC tumors (>30%, n = 320). In particular, high expression of ASAP1, the ADP-ribosylation factor GTPase-activating protein, is significantly related to poor metastatic relapse-free survival of TNBC patients (n = 257, bc-GenExMiner). Furthermore, we have revealed that silencing of ASAP1 modulates numerous cytokine and apoptosis signaling components, such as IL1B, TRAF1, AIFM2, and MAP3K11 that are clinically relevant to survival outcomes of TNBC patients. ASAP1 has been reported to promote invasion and metastasis in various cancer cells. Our findings that ASAP1 is an amplification-dependent TNBC driver gene promoting TNBC cell proliferation, functioning upstream apoptosis components, and correlating to clinical outcomes of TNBC patients, support ASAP1 as a potential actionable target for TNBC treatment.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal , Amplificação de Genes , Proteínas de Neoplasias , Neoplasias de Mama Triplo Negativas , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Linhagem Celular Tumoral , Intervalo Livre de Doença , Feminino , Humanos , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Taxa de Sobrevida , Neoplasias de Mama Triplo Negativas/genética , Neoplasias de Mama Triplo Negativas/metabolismo , Neoplasias de Mama Triplo Negativas/mortalidade , Neoplasias de Mama Triplo Negativas/patologia
7.
Sci Rep ; 9(1): 13308, 2019 09 16.
Artigo em Inglês | MEDLINE | ID: mdl-31527768

RESUMO

Triple-negative breast cancer (TNBC) is an aggressive subtype of breast cancer with poor clinical prognosis and limited targeted treatment strategies. Kinase inhibitor screening of a panel of 20 TNBC cell lines uncovered three critical TNBC subgroups: 1) sensitive to only MEK inhibitors; 2) sensitive to only Akt inhibitors; 3) resistant to both MEK/Akt inhibitors. Using genomic, transcriptomic and proteomic datasets of these TNBC cell lines we unravelled molecular features associated with the MEK and Akt drug resistance. MEK inhibitor-resistant TNBC cell lines were discriminated from Akt inhibitor-resistant lines by the presence of PIK3CA/PIK3R1/PTEN mutations, high p-Akt and low p-MEK levels, yet these features could not distinguish double-resistant cells. Gene set enrichment analyses of transcriptomic and proteomic data of the MEK and Akt inhibitor response groups revealed a set of cell cycle-related genes associated with the double-resistant phenotype; these genes were overexpressed in a subset of breast cancer patients. CDK inhibitors targeting the cell cycle programme could overcome the Akt and MEK inhibitor double-resistance. In conclusion, we uncovered molecular features and alternative treatment strategies for TNBC that are double-resistant to Akt and MEK inhibitors.


Assuntos
Resistencia a Medicamentos Antineoplásicos/fisiologia , Neoplasias de Mama Triplo Negativas/genética , Neoplasias de Mama Triplo Negativas/metabolismo , Apoptose/efeitos dos fármacos , Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Classe I de Fosfatidilinositol 3-Quinases/genética , Classe Ia de Fosfatidilinositol 3-Quinase/genética , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/genética , Receptores ErbB/metabolismo , Feminino , Genes cdc/efeitos dos fármacos , Genes cdc/genética , Humanos , MAP Quinase Quinase 1/antagonistas & inibidores , MAP Quinase Quinase 1/metabolismo , PTEN Fosfo-Hidrolase/genética , Inibidores de Proteínas Quinases/farmacologia , Proteômica , Proteínas Proto-Oncogênicas c-akt/antagonistas & inibidores , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais/efeitos dos fármacos , Transcriptoma/genética , Neoplasias de Mama Triplo Negativas/tratamento farmacológico
8.
Breast Cancer Res Treat ; 178(2): 263-274, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31388935

RESUMO

PURPOSE: Owing to its genetic heterogeneity and acquired resistance, triple-negative breast cancer (TNBC) is not responsive to single-targeted therapy, causing disproportional cancer-related death worldwide. Combined targeted therapy strategies to block interactive oncogenic signaling networks are being explored for effective treatment of the refractory TNBC subtype. METHODS: A broad kinase inhibitor screen was applied to profile the proliferative responses of TNBC cells, revealing resistance of TNBC cells to inhibition of the mammalian target of rapamycin (mTOR). A systematic drug combination screen was subsequently performed to identify that AEE788, an inhibitor targeting multiple receptor tyrosine kinases (RTKs) EGFR/HER2 and VEGFR, synergizes with selective mTOR inhibitor rapamycin as well as its analogs (rapalogs) temsirolimus and everolimus to inhibit TNBC cell proliferation. RESULTS: The combination treatment with AEE788 and rapalog effectively inhibits phosphorylation of mTOR and 4EBP1, relieves mTOR inhibition-mediated upregulation of cyclin D1, and maintains suppression of AKT and ERK signaling, thereby sensitizing TNBC cells to the rapalogs. siRNA validation of cheminformatics-based predicted AEE788 targets has further revealed the mTOR interactive RPS6K members (RPS6KA3, RPS6KA6, RPS6KB1, and RPS6KL1) as synthetic lethal targets for rapalog combination treatment. CONCLUSIONS: mTOR signaling is highly activated in TNBC tumors. As single rapalog treatment is insufficient to block mTOR signaling in rapalog-resistant TNBC cells, our results thus provide a potential multi-kinase inhibitor combinatorial strategy to overcome mTOR-targeted therapy resistance in TNBC cells.


Assuntos
Antineoplásicos/farmacologia , Resistencia a Medicamentos Antineoplásicos , Inibidores de Proteínas Quinases/farmacologia , Serina-Treonina Quinases TOR/antagonistas & inibidores , Neoplasias de Mama Triplo Negativas/metabolismo , Antineoplásicos/uso terapêutico , Biomarcadores , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Feminino , Humanos , Fosforilação , Inibidores de Proteínas Quinases/uso terapêutico , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais/efeitos dos fármacos , Neoplasias de Mama Triplo Negativas/tratamento farmacológico
9.
Breast Cancer Res ; 21(1): 77, 2019 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-31262335

RESUMO

BACKGROUND: The effective treatment of triple-negative breast cancer (TNBC) remains a profound clinical challenge. Despite frequent epidermal growth factor receptor (EGFR) overexpression and reliance on downstream signalling pathways in TNBC, resistance to EGFR-tyrosine kinase inhibitors (TKIs) remains endemic. Therefore, the identification of targeted agents, which synergise with current therapeutic options, is paramount. METHODS: Compound-based, high-throughput, proliferation screening was used to profile the response of TNBC cell lines to EGFR-TKIs, western blotting and siRNA transfection being used to examine the effect of inhibitors on EGFR-mediated signal transduction and cellular dependence on such pathways, respectively. A kinase inhibitor combination screen was used to identify compounds that synergised with EGFR-TKIs in TNBC, utilising sulphorhodamine B (SRB) assay as read-out for proliferation. The impact of drug combinations on cell cycle arrest, apoptosis and signal transduction was assessed using flow cytometry, automated live-cell imaging and western blotting, respectively. RNA sequencing was employed to unravel transcriptomic changes elicited by this synergistic combination and to permit identification of the signalling networks most sensitive to co-inhibition. RESULTS: We demonstrate that a dual cdc7/CDK9 inhibitor, PHA-767491, synergises with multiple EGFR-TKIs (lapatinib, erlotinib and gefitinib) to overcome resistance to EGFR-targeted therapy in various TNBC cell lines. Combined inhibition of EGFR and cdc7/CDK9 resulted in reduced cell proliferation, accompanied by induction of apoptosis, G2-M cell cycle arrest, inhibition of DNA replication and abrogation of CDK9-mediated transcriptional elongation, in contrast to mono-inhibition. Moreover, high expression of cdc7 and RNA polymerase II Subunit A (POLR2A), the direct target of CDK9, is significantly correlated with poor metastasis-free survival in a cohort of breast cancer patients. RNA sequencing revealed marked downregulation of pathways governing proliferation, transcription and cell survival in TNBC cells treated with the combination of an EGFR-TKI and a dual cdc7/CDK9 inhibitor. A number of genes enriched in these downregulated pathways are associated with poor metastasis-free survival in TNBC. CONCLUSIONS: Our results highlight that dual inhibition of cdc7 and CDK9 by PHA-767491 is a potential strategy for targeting TNBC resistant to EGFR-TKIs.


Assuntos
Antineoplásicos/uso terapêutico , Proteínas de Ciclo Celular/antagonistas & inibidores , Quinase 9 Dependente de Ciclina/antagonistas & inibidores , Resistencia a Medicamentos Antineoplásicos , Inibidores de Proteínas Quinases/uso terapêutico , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Neoplasias de Mama Triplo Negativas/metabolismo , Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Receptores ErbB/antagonistas & inibidores , Feminino , Perfilação da Expressão Gênica , Humanos , Terapia de Alvo Molecular , Prognóstico , Inibidores de Proteínas Quinases/farmacologia , Transdução de Sinais , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Neoplasias de Mama Triplo Negativas/mortalidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA