Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
iScience ; 26(4): 106443, 2023 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-37070068

RESUMO

Advances in the understanding of the tumor microenvironment have led to development of immunotherapeutic strategies, such as chimeric antigen receptor T cells (CAR-Ts). However, despite success in blood malignancies, CAR-T therapies in solid tumors have been hampered by their restricted infiltration. Here, we used our understanding of early cytotoxic lymphocyte infiltration of human lymphocytes in solid tumors in vivo to investigate the receptors in normal, adjacent, and tumor tissues of primary non-small-cell lung cancer specimens. We found that CX3CL1-CX3CR1 reduction restricts cytotoxic cells from the solid-tumor bed, contributing to tumor escape. Based on this, we designed a CAR-T construct using the well-established natural killer group 2, member D (NKG2D) CAR-T expression together with overexpression of CX3CR1 to promote their infiltration. These CAR-Ts infiltrate tumors at higher rates than control-activated T cells or IL-15-overexpressing NKG2D CAR-Ts. This construct also had similar functionality in a liver-cancer model, demonstrating potential efficacy in other solid malignancies.

2.
Methods Mol Biol ; 2641: 81-100, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37074643

RESUMO

Pyroptosis is an immunological response to infection and cellular stresses initiated by inflammasome oligomerization resulting in the release of pro-inflammatory factors including cytokines and other immune stimuli into the extracellular matrix. In order to understand the role of inflammasome activation and subsequent pyroptosis in human infection and disease pathogenesis and to explore markers of these signaling events as potential disease or response biomarkers, we must utilize quantitative, reliable, and reproducible assays to readily investigate these pathways in primary specimens. Here, we describe two methods using imaging flow cytometry for evaluation of inflammasome ASC specks in homogeneous peripheral blood monocytes and in bulk, heterogeneous peripheral blood mononuclear cells. Both methods can be applied to assess speck formation as a biomarker for inflammasome activation in primary specimens. Additionally, we describe the methods for quantification of extracellular oxidized mitochondrial DNA from primary plasma samples, serving as a proxy for pyroptosis. Collectively, these assays may be utilized to determine pyroptotic influences on viral infection and disease development or as diagnostic aids and response biomarkers.


Assuntos
Inflamassomos , Piroptose , Humanos , Citometria de Fluxo/métodos , Inflamassomos/metabolismo , Leucócitos Mononucleares/metabolismo , Proteínas Adaptadoras de Sinalização CARD/metabolismo , Ensaio de Imunoadsorção Enzimática , Biomarcadores , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo
3.
Int J Mol Sci ; 24(4)2023 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-36835307

RESUMO

Myelodysplastic Syndromes (MDSs) are bone marrow (BM) failure malignancies characterized by constitutive innate immune activation, including NLRP3 inflammasome driven pyroptotic cell death. We recently reported that the danger-associated molecular pattern (DAMP) oxidized mitochondrial DNA (ox-mtDNA) is diagnostically increased in MDS plasma although the functional consequences remain poorly defined. We hypothesized that ox-mtDNA is released into the cytosol, upon NLRP3 inflammasome pyroptotic lysis, where it propagates and further enhances the inflammatory cell death feed-forward loop onto healthy tissues. This activation can be mediated via ox-mtDNA engagement of Toll-like receptor 9 (TLR9), an endosomal DNA sensing pattern recognition receptor known to prime and activate the inflammasome propagating the IFN-induced inflammatory response in neighboring healthy hematopoietic stem and progenitor cells (HSPCs), which presents a potentially targetable axis for the reduction in inflammasome activation in MDS. We found that extracellular ox-mtDNA activates the TLR9-MyD88-inflammasome pathway, demonstrated by increased lysosome formation, IRF7 translocation, and interferon-stimulated gene (ISG) production. Extracellular ox-mtDNA also induces TLR9 redistribution in MDS HSPCs to the cell surface. The effects on NLRP3 inflammasome activation were validated by blocking TLR9 activation via chemical inhibition and CRISPR knockout, demonstrating that TLR9 was necessary for ox-mtDNA-mediated inflammasome activation. Conversely, lentiviral overexpression of TLR9 sensitized cells to ox-mtDNA. Lastly, inhibiting TLR9 restored hematopoietic colony formation in MDS BM. We conclude that MDS HSPCs are primed for inflammasome activation via ox-mtDNA released by pyroptotic cells. Blocking the TLR9/ox-mtDNA axis may prove to be a novel therapeutic strategy for MDS.


Assuntos
DNA Mitocondrial , Inflamassomos , Síndromes Mielodisplásicas , Receptor Toll-Like 9 , Humanos , DNA Mitocondrial/metabolismo , Inflamassomos/metabolismo , Síndromes Mielodisplásicas/genética , Síndromes Mielodisplásicas/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Transdução de Sinais/fisiologia , Receptor Toll-Like 9/metabolismo
4.
JCI Insight ; 7(15)2022 08 08.
Artigo em Inglês | MEDLINE | ID: mdl-35788117

RESUMO

NLRP3 inflammasome and IFN-stimulated gene (ISG) induction are key biological drivers of ineffective hematopoiesis and inflammation in myelodysplastic syndromes (MDSs). Gene mutations involving mRNA splicing and epigenetic regulatory pathways induce inflammasome activation and myeloid lineage skewing in MDSs through undefined mechanisms. Using immortalized murine hematopoietic stem and progenitor cells harboring these somatic gene mutations and primary MDS BM specimens, we showed accumulation of unresolved R-loops and micronuclei with concurrent activation of the cytosolic sensor cyclic GMP-AMP synthase. Cyclic GMP-AMP synthase/stimulator of IFN genes (cGAS/STING) signaling caused ISG induction, NLRP3 inflammasome activation, and maturation of the effector protease caspase-1. Deregulation of RNA polymerase III drove cytosolic R-loop generation, which upon inhibition, extinguished ISG and inflammasome response. Mechanistically, caspase-1 degraded the master erythroid transcription factor, GATA binding protein 1, provoking anemia and myeloid lineage bias that was reversed by cGAS inhibition in vitro and in Tet2-/- hematopoietic stem and progenitor cell-transplanted mice. Together, these data identified a mechanism by which functionally distinct mutations converged upon the cGAS/STING/NLRP3 axis in MDS, directing ISG induction, pyroptosis, and myeloid lineage skewing.


Assuntos
Inflamassomos , Síndromes Mielodisplásicas , Animais , Caspases , DNA/metabolismo , Inflamassomos/metabolismo , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Camundongos , Mutação , Síndromes Mielodisplásicas/genética , Síndromes Mielodisplásicas/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Nucleotidiltransferases/genética , Nucleotidiltransferases/metabolismo
6.
Blood Adv ; 5(8): 2216-2228, 2021 04 27.
Artigo em Inglês | MEDLINE | ID: mdl-33890980

RESUMO

Myelodysplastic syndromes (MDS) are heterogeneous hematopoietic stem cell malignancies that can phenotypically resemble other hematologic disorders. Thus, tools that may add to current diagnostic practices could aid in disease discrimination. Constitutive innate immune activation is a pathogenetic driver of ineffective hematopoiesis in MDS through Nod-like receptor protein 3 (NLRP3)-inflammasome-induced pyroptotic cell death. Oxidized mitochondrial DNA (ox-mtDNA) is released upon cytolysis, acts as a danger signal, and triggers inflammasome oligomerization via DNA sensors. By using immortalized bone marrow cells from murine models of common MDS somatic gene mutations and MDS primary samples, we demonstrate that ox-mtDNA is released upon pyroptosis. ox-mtDNA was significantly increased in MDS peripheral blood (PB) plasma compared with the plasma of healthy donors, and it was significantly higher in lower-risk MDS vs higher-risk MDS, consistent with the greater pyroptotic cell fraction in lower-risk patients. Furthermore, ox-mtDNA was significantly higher in MDS PB plasma compared with all other hematologic malignancies studied, with the exception of chronic lymphocytic leukemia (CLL). Receiver operating characteristic/area under the curve (ROC/AUC) analysis demonstrated that ox-mtDNA is a sensitive and specific biomarker for patients with MDS compared with healthy donors (AUC, 0.964), other hematologic malignancies excluding CLL (AUC, 0.893), and reactive conditions (AUC, 0.940). ox-mtDNA positively and significantly correlated with levels of known alarmins S100A9, S100A8, and apoptosis-associated speck-like protein containing caspase recruitment domain (CARD) specks, which provide an index of medullary pyroptosis. Collectively, these data indicate that quantifiable ox-mtDNA released into the extracellular space upon inflammasome activation serves as a biomarker for MDS and the magnitude of pyroptotic cell death.


Assuntos
Inflamassomos , Síndromes Mielodisplásicas , Animais , Biomarcadores , DNA Mitocondrial/genética , Humanos , Camundongos , Síndromes Mielodisplásicas/diagnóstico , Síndromes Mielodisplásicas/genética , Piroptose
7.
J Clin Oncol ; 39(14): 1584-1594, 2021 05 10.
Artigo em Inglês | MEDLINE | ID: mdl-33449813

RESUMO

PURPOSE: Approximately 20% of patients with TP53-mutant myelodysplastic syndromes (MDS) achieve complete remission (CR) with hypomethylating agents. Eprenetapopt (APR-246) is a novel, first-in-class, small molecule that restores wild-type p53 functions in TP53-mutant cells. METHODS: This was a phase Ib/II study to determine the safety, recommended phase II dose, and efficacy of eprenetapopt administered in combination with azacitidine in patients with TP53-mutant MDS or acute myeloid leukemia (AML) with 20%-30% marrow blasts (ClinicalTrials.gov identifier: NCT03072043). RESULTS: Fifty-five patients (40 MDS, 11 AML, and four MDS/myeloproliferative neoplasms) with at least one TP53 mutation were treated. The overall response rate was 71% with 44% achieving CR. Of patients with MDS, 73% (n = 29) responded with 50% (n = 20) achieving CR and 58% (23/40) a cytogenetic response. The overall response rate and CR rate for patients with AML was 64% (n = 7) and 36% (n = 4), respectively. Patients with only TP53 mutations by next-generation sequencing had higher rates of CR (69% v 25%; P = .006). Responding patients had significant reductions in TP53 variant allele frequency and p53 expression by immunohistochemistry, with 21 (38%) achieving complete molecular remission (variant allele frequency < 5%). Median overall survival was 10.8 months with significant improvement in responding versus nonresponding patients by landmark analysis (14.6 v 7.5 months; P = .0005). Overall, 19/55 (35%) patients underwent allogeneic hematopoietic stem-cell transplant, with a median overall survival of 14.7 months. Adverse events were similar to those reported for azacitidine or eprenetapopt monotherapy, with the most common grade ≥ 3 adverse events being febrile neutropenia (33%), leukopenia (29%), and neutropenia (29%). CONCLUSION: Combination treatment with eprenetapopt and azacitidine is well-tolerated yielding high rates of clinical response and molecular remissions in patients with TP53-mutant MDS and oligoblastic AML.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Azacitidina/administração & dosagem , Mutação , Síndromes Mielodisplásicas/tratamento farmacológico , Quinuclidinas/administração & dosagem , Proteína Supressora de Tumor p53/genética , Adulto , Idoso , Idoso de 80 Anos ou mais , Azacitidina/efeitos adversos , Biomarcadores Tumorais , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Síndromes Mielodisplásicas/genética , Síndromes Mielodisplásicas/mortalidade , Quinuclidinas/efeitos adversos
8.
Blood ; 136(24): 2812-2823, 2020 12 10.
Artigo em Inglês | MEDLINE | ID: mdl-32730593

RESUMO

Somatic gene mutations are key determinants of outcome in patients with myelodysplastic syndromes (MDS) and secondary AML (sAML). In particular, patients with TP53 mutations represent a distinct molecular cohort with uniformly poor prognosis. The precise pathogenetic mechanisms underlying these inferior outcomes have not been delineated. In this study, we characterized the immunological features of the malignant clone and alterations in the immune microenvironment in patients with TP53-mutant and wild-type MDS or sAML. Notably, PDL1 expression is significantly increased in hematopoietic stem cells of patients with TP53 mutations, which is associated with MYC upregulation and marked downregulation of MYC's negative regulator miR-34a, a p53 transcription target. Notably, patients with TP53 mutations display significantly reduced numbers of bone marrow-infiltrating OX40+ cytotoxic T cells and helper T cells, as well as decreased ICOS+ and 4-1BB+ natural killer cells. Further, highly immunosuppressive regulatory T cells (Tregs) (ie, ICOShigh/PD-1-) and myeloid-derived suppressor cells (PD-1low) are expanded in cases with TP53 mutations. Finally, a higher proportion of bone marrow-infiltrating ICOShigh/PD-1- Treg cells is a highly significant independent predictor of overall survival. We conclude that the microenvironment of TP53 mutant MDS and sAML has an immune-privileged, evasive phenotype that may be a primary driver of poor outcomes and submit that immunomodulatory therapeutic strategies may offer a benefit for this molecularly defined subpopulation.


Assuntos
Leucemia Mieloide Aguda , Mutação , Síndromes Mielodisplásicas , Células Supressoras Mieloides/imunologia , Linfócitos T Reguladores/imunologia , Proteína Supressora de Tumor p53 , Adulto , Idoso , Idoso de 80 Anos ou mais , Feminino , Humanos , Terapia de Imunossupressão , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/imunologia , Leucemia Mieloide Aguda/patologia , Masculino , MicroRNAs/genética , MicroRNAs/imunologia , Pessoa de Meia-Idade , Síndromes Mielodisplásicas/genética , Síndromes Mielodisplásicas/imunologia , Síndromes Mielodisplásicas/patologia , Células Supressoras Mieloides/patologia , RNA Neoplásico/genética , RNA Neoplásico/imunologia , Linfócitos T Reguladores/patologia , Proteína Supressora de Tumor p53/imunologia
9.
Lancet Haematol ; 5(9): e393-e402, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-30072146

RESUMO

BACKGROUND: NLRP3 inflammasome-directed pyroptotic cell death drives ineffective haemopoiesis in myelodysplastic syndromes. During inflammasome assembly, the apoptosis-associated speck-like protein containing a CARD (PYCARD, commonly known as ASC) adaptor protein polymerises into large, filamentous clusters termed ASC specks that are released upon cytolysis. Specks are resistant to proteolytic degradation because of their prion-like structure, and therefore might serve as a biomarker for pyroptotic cell death in myelodysplastic syndromes. METHODS: This observational cohort study was done at the H Lee Moffitt Cancer Center (Tampa, FL, USA). Patients with myelodysplastic syndromes, healthy controls, and patients with non-myelodysplastic syndrome haematological cancers or type 2 diabetes were recruited. We used confocal and electron microscopy to visualise, and flow cytometry to quantify, ASC specks in peripheral blood and bone marrow plasma samples. Speck percentages were compared by t test or ANOVA, correlations were assessed by Spearman's rank correlation coefficient, and biomarker efficiency was assessed by receiver operating characteristics and area under the curve (AUC) analysis. FINDINGS: Between Jan 1, 2005, and Jan 12, 2017, we obtained samples from 177 patients with myelodysplastic syndromes and 29 healthy controls for the discovery cohort, and 113 patients with myelodysplastic syndromes and 31 healthy controls for the validation cohort. We also obtained samples from 22 patients with del(5q) myelodysplastic syndromes, 230 patients with non-myelodysplastic syndrome haematological cancers and 23 patients with type 2 diabetes. After adjustment for glucose concentration, the log10-transformed mean percentage of peripheral blood plasma-derived ASC specks was significantly higher in the 177 patients with myelodysplastic syndromes versus the 29 age-matched, healthy donors (-0·41 [SD 0·49] vs -0·67 [0·59], p=0·034). The percentages of ASC specks in samples from patients with myelodysplastic syndromes were significantly greater than those in samples from individuals with every other haematological cancer studied (all p<0·05) except myelofibrosis (p=0·19). The findings were confirmed in the independent validation cohort (p<0·0001). Peripheral blood plasma danger-associated molecular pattern protein S100-A8 and protein S100-A9 concentrations from 144 patients with myelodysplastic syndromes from the discovery cohort directly correlated with ASC speck percentage (r=0·4, p<0·0001 for S100-A8 and r=0·2, p=0·017 for S100-A9). Patients with at least two somatic gene mutations had a significantly greater mean percentage of peripheral blood plasma ASC specks than patients with one or no mutation (-0·22 [SD 0·63] vs -0·53 [0·44], p=0·008). The percentage of plasma ASC specks was a robust marker for pyroptosis in myelodysplastic syndromes (AUC=0·888), in which a cutoff of 0·80 maximised sensitivity at 0·84 (95% CI 0·65-0·91) and specificity at 0·87 (0·58-0·97). INTERPRETATION: Our results underscore the pathobiological relevance of ASC specks and suggest that ASC specks are a sensitive and specific candidate plasma biomarker that provides an index of medullary pyroptotic cell death and ineffective haemopoiesis in patients with myelodysplastic syndromes. FUNDING: T32 Training Grant (NIH/NCI 5T32 CA115308-08), Edward P Evans Foundation, The Taub Foundation Grants Program, the Flow Cytometry, Analytic Microscopy, and Tissue Core Facilities at the H Lee Moffitt Cancer Center and Research Institute, a National Cancer Institute-designated Comprehensive Cancer Center (P30-CA076292).


Assuntos
Proteínas Adaptadoras de Sinalização CARD/sangue , Síndromes Mielodisplásicas/sangue , Síndromes Mielodisplásicas/patologia , Piroptose , Idoso , Biomarcadores/sangue , Estudos de Casos e Controles , Estudos de Coortes , Feminino , Humanos , Masculino
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA