Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Dev Neurobiol ; 2024 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-38837880

RESUMO

The Pcdhg gene cluster encodes 22 γ-Protocadherin (γ-Pcdh) cell adhesion molecules that critically regulate multiple aspects of neural development, including neuronal survival, dendritic and axonal arborization, and synapse formation and maturation. Each γ-Pcdh isoform has unique protein domains-a homophilically interacting extracellular domain and a juxtamembrane cytoplasmic domain-as well as a C-terminal cytoplasmic domain shared by all isoforms. The extent to which isoform-specific versus shared domains regulate distinct γ-Pcdh functions remains incompletely understood. Our previous in vitro studies identified protein kinase C (PKC) phosphorylation of a serine residue within a shared C-terminal motif as a mechanism through which γ-Pcdh promotion of dendrite arborization via myristoylated alanine-rich C-kinase substrate (MARCKS) is abrogated. Here, we used CRISPR/Cas9 genome editing to generate two new mouse lines expressing only non-phosphorylatable γ-Pcdhs, due either to a serine-to-alanine mutation (PcdhgS/A) or to a 15-amino acid C-terminal deletion resulting from insertion of an early stop codon (PcdhgCTD). Both lines are viable and fertile, and the density and maturation of dendritic spines remain unchanged in both PcdhgS/A and PcdhgCTD cortex. Dendrite arborization of cortical pyramidal neurons, however, is significantly increased in both lines, as are levels of active MARCKS. Intriguingly, despite having significantly reduced levels of γ-Pcdh proteins, the PcdhgCTD mutation yields the strongest phenotype, with even heterozygous mutants exhibiting increased arborization. The present study confirms that phosphorylation of a shared C-terminal motif is a key γ-Pcdh negative regulation point and contributes to a converging understanding of γ-Pcdh family function in which distinct roles are played by both individual isoforms and discrete protein domains.

2.
Curr Top Dev Biol ; 148: 115-137, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35461562

RESUMO

Since their first description, the clustered protocadherins (cPcdhs) have sparked interest for their potential to generate diverse cell-surface recognition cues and their widespread expression in the nervous system. Through the use of mouse models, we have learned a great deal about the functions served by cPcdhs, and how their molecular diversity is regulated. cPcdhs are essential contributors to a host of processes during neural circuit formation, including neuronal survival, dendritic and axonal branching, self-avoidance and targeting, and synapse formation. Their expression is controlled by the interplay of epigenetic marks with proximal and distal elements involving high order DNA looping, regulating transcription factor binding. Here, we will review various mouse models targeting the cPcdh locus and how they have been instructive in uncovering the regulation and function of the cPcdhs.


Assuntos
Caderinas , Protocaderinas , Animais , Caderinas/genética , Caderinas/metabolismo , Comunicação Celular , Sobrevivência Celular , Camundongos , Neurogênese
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA