Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Birth Defects Res ; 115(19): 1851-1865, 2023 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-37435868

RESUMO

BACKGROUND: In addition to genomic risk variants and environmental influences, increasing evidence suggests epigenetic modifications are important for orofacial development and their alterations can contribute to orofacial clefts. Ezh2 encodes a core catalytic component of the Polycomb repressive complex responsible for addition of methyl marks to Histone H3 as a mechanism of repressing target genes. The role of Ezh2 in orofacial clefts remains unknown. AIMS: To investigate the epithelial role of Ezh2-dependent methylation in secondary palatogenesis. METHODS: We used conditional gene-targeting methods to ablate Ezh2 in the surface ectoderm-derived oral epithelium of mouse embryos. We then performed single-cell RNA sequencing combined with immunofluorescence and RT-qPCR to investigate gene expression in conditional mutant palate. We also employed double knockout analyses of Ezh1 and Ezh2 to address if they have synergistic roles in palatogenesis. RESULTS: We found that conditional inactivation of Ezh2 in oral epithelia results in partially penetrant cleft palate. Double knockout analyses revealed that another family member Ezh1 is dispensable in orofacial development, and it does not have synergistic roles with Ezh2 in palatogenesis. Histochemistry and single-cell RNA-seq analyses revealed dysregulation of cell cycle regulators in the palatal epithelia of Ezh2 mutant mouse embryos disrupts palatogenesis. CONCLUSION: Ezh2-dependent histone H3K27 methylation represses expression of cell cycle regulator Cdkn1a and promotes proliferation in the epithelium of the developing palatal shelves. Loss of this regulation may perturb movement of the palatal shelves, causing a delay in palate elevation which may result in failure of the secondary palate to close altogether.


Assuntos
Fenda Labial , Fissura Palatina , Animais , Camundongos , Fissura Palatina/genética , Fissura Palatina/metabolismo , Histonas/genética , Histonas/metabolismo , Metilação , Proteínas do Grupo Polycomb
2.
Birth Defects Res ; 115(19): 1835-1850, 2023 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-37497595

RESUMO

Orofacial clefts (OFCs) are one of the most common types of structural birth defects. The etiologies are complicated, involving with genetic, epigenetic, and environmental factors. Studies have found that maternal diabetes and metabolic syndrome are associated with a higher risk of OFCs in offspring. Metabolic syndrome is a clustering of several disease risk factors, including hyperglycemia, dyslipidemia, obesity, and hypertension. Metabolic disease during pregnancy can increase risk of adverse outcomes and significantly influence fetal development, including orofacial formation and fusion. An altered metabolic state may contribute to developmental disorders or congenital defects including OFCs, potentially through epigenetic modulations, such as histone modification, DNA methylation, and noncoding RNA expression to alter activities of critical morphogenetic signaling or related developmental genes. This review summarizes the currently available evidence and underlying mechanisms of how the maternal metabolic syndrome is associated with OFCs in mostly human and some animal studies. It may provide a better understanding of the interactions between intrauterine metabolic status and fetal orofacial development which might be applied toward prevention and treatments of OFCs.


Assuntos
Fenda Labial , Fissura Palatina , Diabetes Gestacional , Síndrome Metabólica , Gravidez , Feminino , Animais , Humanos , Fenda Labial/complicações , Fenda Labial/genética , Fissura Palatina/complicações , Fissura Palatina/genética , Síndrome Metabólica/complicações , Síndrome Metabólica/genética , Epigênese Genética
3.
Mol Ther Nucleic Acids ; 32: 289-301, 2023 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-37096163

RESUMO

Antisense oligonucleotides (ASOs) are short synthetic nucleic acids that recognize and bind to complementary RNA to modulate gene expression. It is well established that single-stranded, phosphorothioate-modified ASOs enter cells independent of carrier molecules, primarily via endocytic pathways, but that only a small portion of internalized ASO is released into the cytosol and/or nucleus, rendering the majority of ASO inaccessible to the targeted RNA. Identifying pathways that can increase the available ASO pool is valuable as a research tool and therapeutically. Here, we conducted a functional genomic screen for ASO activity by engineering GFP splice reporter cells and applying genome-wide CRISPR gene activation. The screen can identify factors that enhance ASO splice modulation activity. Characterization of hit genes uncovered GOLGA8, a largely uncharacterized protein, as a novel positive regulator enhancing ASO activity by ∼2-fold. Bulk ASO uptake is 2- to 5-fold higher in GOLGA8-overexpressing cells where GOLGA8 and ASOs are observed in the same intracellular compartments. We find GOLGA8 is highly localized to the trans-Golgi and readily detectable at the plasma membrane. Interestingly, overexpression of GOLGA8 increased activity for both splice modulation and RNase H1-dependent ASOs. Taken together, these results support a novel role for GOLGA8 in productive ASO uptake.

4.
Development ; 149(14)2022 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-35781558

RESUMO

Formation of highly unique and complex facial structures is controlled by genetic programs that are responsible for the precise coordination of three-dimensional tissue morphogenesis. However, the underlying mechanisms governing these processes remain poorly understood. We combined mouse genetic and genomic approaches to define the mechanisms underlying normal and defective midfacial morphogenesis. Conditional inactivation of the Wnt secretion protein Wls in Pax3-expressing lineage cells disrupted frontonasal primordial patterning, cell survival and directional outgrowth, resulting in altered facial structures, including midfacial hypoplasia and midline facial clefts. Single-cell RNA sequencing revealed unique transcriptomic atlases of mesenchymal subpopulations in the midfacial primordia, which are disrupted in the conditional Wls mutants. Differentially expressed genes and cis-regulatory sequence analyses uncovered that Wls modulates and integrates a core gene regulatory network, consisting of key midfacial regulatory transcription factors (including Msx1, Pax3 and Pax7) and their downstream targets (including Wnt, Shh, Tgfß and retinoic acid signaling components), in a mesenchymal subpopulation of the medial nasal prominences that is responsible for midline facial formation and fusion. These results reveal fundamental mechanisms underlying mammalian midfacial morphogenesis and related defects at single-cell resolution.


Assuntos
Redes Reguladoras de Genes , Transcriptoma , Animais , Face , Mamíferos/genética , Camundongos , Morfogênese/genética , Transcriptoma/genética , Proteínas Wnt/metabolismo
5.
Dis Model Mech ; 15(6)2022 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-35514236

RESUMO

Neural tube defects (NTDs) are among the common and severe birth defects with poorly understood etiology. Mutations in the Wnt co-receptor LRP6 are associated with NTDs in humans. Either gain-of-function (GOF) or loss-of-function (LOF) mutations of Lrp6 can cause NTDs in mice. NTDs in Lrp6-GOF mutants may be attributed to altered ß-catenin-independent noncanonical Wnt signaling. However, the mechanisms underlying NTDs in Lrp6-LOF mutants and the role of Lrp6-mediated canonical Wnt/ß-catenin signaling in neural tube closure remain unresolved. We previously demonstrated that ß-catenin signaling is required for posterior neuropore (PNP) closure. In the current study, conditional ablation of Lrp6 in dorsal PNP caused spinal NTDs with diminished activities of Wnt/ß-catenin signaling and its downstream target gene Pax3, which is required for PNP closure. ß-catenin-GOF rescued NTDs in Lrp6-LOF mutants. Moreover, maternal supplementation of a Wnt/ß-catenin signaling agonist reduced the frequency and severity of spinal NTDs in Lrp6-LOF mutants by restoring Pax3 expression. Together, these results demonstrate the essential role of Lrp6-mediated Wnt/ß-catenin signaling in PNP closure, which could also provide a therapeutic target for NTD intervention through manipulation of canonical Wnt/ß-catenin signaling activities.


Assuntos
Defeitos do Tubo Neural , Via de Sinalização Wnt , Animais , Proteína-6 Relacionada a Receptor de Lipoproteína de Baixa Densidade/genética , Proteína-6 Relacionada a Receptor de Lipoproteína de Baixa Densidade/metabolismo , Camundongos , Tubo Neural/metabolismo , Fatores de Transcrição/metabolismo , Proteínas Wnt/genética , Proteínas Wnt/metabolismo , Via de Sinalização Wnt/genética , beta Catenina/metabolismo
6.
Front Cell Neurosci ; 15: 683687, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34557075

RESUMO

Considerable clinical evidence supports that increased blood-brain barrier (BBB) permeability is linked to immune extravasation of CNS parenchyma during neuroinflammation. Although BBB permeability and immune extravasation are known to be provoked by vascular endothelial growth factor-A (i.e., VEGF-A) and C-X-C motif chemokine ligand 12 (CXCL12), respectively, the mechanisms that link both processes are still elusive. The interleukin-20 (i.e., IL-20) cytokine signaling pathway was previously implicated in VEGF-mediated angiogenesis and is known to induce cellular response by way of signaling through IL-20 receptor subunit ß (i.e., IL-20RB). Dysregulated IL-20 signaling is implicated in many inflammatory pathologies, but it's contribution to neuroinflammation has yet to be reported. We hypothesize that the IL-20 cytokine, and the IL cytokine subfamily more broadly, play a key role in CNS neuroinflammation by signaling through IL-20RB, induce VEGF activity, and enhance both BBB-permeability and CXCL12-mediated immune extravasation. To address this hypothesis, we actively immunized IL-20RB-/- mice and wild-type mice to induce experimental autoimmune encephalomyelitis (EAE) and found that IL-20RB-/- mice showed amelioration of disease progression compared to wild-type mice. Similarly, we passively immunized IL-20RB-/- mice and wild-type mice with myelin-reactive Th1 cells from either IL-20RB-/- and wild-type genotype. Host IL-20RB-/- mice showed lesser disease progression than wild-type mice, regardless of the myelin-reactive Th1 cells genotype. Using multianalyte bead-based immunoassay and ELISA, we found distinctive changes in levels of pro-inflammatory cytokines between IL-20RB-/- mice and wild-type mice at peak of EAE. We also found detectable levels of all cytokines of the IL-20 subfamily within CNS tissues and specific alteration to IL-20 subfamily cytokines IL-19, IL-20, and IL-24, expression levels. Immunolabeling of CNS region-specific microvessels confirmed IL-20RB protein at the spinal cord microvasculature and upregulation during EAE. Microvessels isolated from macaques CNS tissues also expressed IL-20RB. Moreover, we identified the expression of all IL-20 receptor subunits: IL-22 receptor subunit α-1 (IL-22RA1), IL-20RB, and IL-20 receptor subunit α (IL-20RA) in human CNS microvessels. Notably, human cerebral microvasculature endothelial cells (HCMEC/D3) treated with IL-1ß showed augmented expression of the IL-20 receptor. Lastly, IL-20-treated HCMEC/D3 showed alterations on CXCL12 apicobasal polarity consistent with a neuroinflammatory status. This evidence suggests that IL-20 subfamily cytokines may signal at the BBB via IL-20RB, triggering neuroinflammation.

7.
Methods Mol Biol ; 2162: 49-60, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-32926377

RESUMO

CRISPR-based gene editing in mammalian cells is a powerful research tool which has demonstrated efficient site-specific gene modifications and is showing promise as a therapeutic for patients with genetic diseases. Multiple different CRISPR systems have been identified, each with its own target DNA recognition sequence, expanding the editable mammalian genome. It is also now appreciated that chemically modified nucleic acids can substitute for unmodified nucleotides in guide RNAs, providing protection from exonuclease degradation and improving gene editing efficiency. CRISPR-Cpf1 unlike CRISPR-Cas9, has a substantially lower propensity for off-target genomic cleavage, making it a preferred gene editing system for many applications. Here we provide a detailed protocol for use of CRISPR-Cpf1 and chemically modified guide RNAs in cell lines, outlining the steps from designing guide RNAs to a target gene of interest, delivery and expression in cells, and analysis of gene editing events.


Assuntos
Sistemas CRISPR-Cas/genética , Endonucleases/genética , Edição de Genes/métodos , Genoma/genética , Proteínas de Bactérias/genética , Sequência de Bases/genética , Proteínas Associadas a CRISPR/genética , Endodesoxirribonucleases/genética , Humanos , RNA Guia de Cinetoplastídeos/genética
8.
Birth Defects Res ; 112(19): 1558-1587, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32725806

RESUMO

During craniofacial development, defective growth and fusion of the upper lip and/or palate can cause orofacial clefts (OFCs), which are among the most common structural birth defects in humans. The developmental basis of OFCs includes morphogenesis of the upper lip, primary palate, secondary palate, and other orofacial structures, each consisting of diverse cell types originating from all three germ layers: the ectoderm, mesoderm, and endoderm. Cranial neural crest cells and orofacial epithelial cells are two major cell types that interact with various cell lineages and play key roles in orofacial development. The cellular basis of OFCs involves defective execution in any one or several of the following processes: neural crest induction, epithelial-mesenchymal transition, migration, proliferation, differentiation, apoptosis, primary cilia formation and its signaling transduction, epithelial seam formation and disappearance, periderm formation and peeling, convergence and extrusion of palatal epithelial seam cells, cell adhesion, cytoskeleton dynamics, and extracellular matrix function. The latest cellular and developmental findings may provide a basis for better understanding of the underlying genetic, epigenetic, environmental, and molecular mechanisms of OFCs.


Assuntos
Fenda Labial , Fissura Palatina , Fenda Labial/genética , Fissura Palatina/genética , Humanos , Mesoderma , Morfogênese
9.
Biochem Biophys Res Commun ; 526(3): 647-653, 2020 06 04.
Artigo em Inglês | MEDLINE | ID: mdl-32248972

RESUMO

The mechanisms underlying mammalian neural tube closure remain poorly understood. We report a unique cellular process involving multicellular rosette formation, convergent cellular protrusions, and F-actin cable network of the non-neural surface ectodermal cells encircling the closure site of the posterior neuropore, which are demonstrated by scanning electron microscopy and genetic fate mapping analyses during mouse spinal neurulation. These unique cellular structures are severely disrupted in the surface ectodermal transcription factor Grhl3 mutants that exhibit fully penetrant spina bifida. We propose a novel model of mammalian neural tube closure driven by surface ectodermal dynamics, which is computationally visualized.


Assuntos
Actinas/metabolismo , Ectoderma/embriologia , Defeitos do Tubo Neural/embriologia , Tubo Neural/embriologia , Neurulação , Actinas/análise , Animais , Proteínas de Ligação a DNA/genética , Ectoderma/anormalidades , Ectoderma/metabolismo , Ectoderma/ultraestrutura , Camundongos , Mutação , Tubo Neural/anormalidades , Tubo Neural/metabolismo , Tubo Neural/ultraestrutura , Defeitos do Tubo Neural/genética , Defeitos do Tubo Neural/metabolismo , Disrafismo Espinal/embriologia , Disrafismo Espinal/genética , Disrafismo Espinal/metabolismo , Coluna Vertebral/anormalidades , Coluna Vertebral/embriologia , Coluna Vertebral/metabolismo , Coluna Vertebral/ultraestrutura , Fatores de Transcrição/genética
10.
Cells ; 8(10)2019 09 29.
Artigo em Inglês | MEDLINE | ID: mdl-31569501

RESUMO

Neural crest (NC) cells are a temporary population of multipotent stem cells that generate a diverse array of cell types, including craniofacial bone and cartilage, smooth muscle cells, melanocytes, and peripheral neurons and glia during embryonic development. Defective neural crest development can cause severe and common structural birth defects, such as craniofacial anomalies and congenital heart disease. In the early vertebrate embryos, NC cells emerge from the dorsal edge of the neural tube during neurulation and then migrate extensively throughout the anterior-posterior body axis to generate numerous derivatives. Wnt signaling plays essential roles in embryonic development and cancer. This review summarizes current understanding of Wnt signaling in NC cell induction, delamination, migration, multipotency, and fate determination, as well as in NC-derived cancers.


Assuntos
Carcinogênese/metabolismo , Crista Neural/crescimento & desenvolvimento , Via de Sinalização Wnt , Diferenciação Celular , Desenvolvimento Embrionário , Humanos , Crista Neural/metabolismo , Neurogênese
11.
Nat Cell Biol ; 21(6): 743-754, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-31160708

RESUMO

Chromatin assembled with the histone H3 variant CENP-A is the heritable epigenetic determinant of human centromere identity. Using genome-wide mapping and reference models for 23 human centromeres, CENP-A binding sites are identified within the megabase-long, repetitive α-satellite DNAs at each centromere. CENP-A is shown in early G1 to be assembled into nucleosomes within each centromere and onto 11,390 transcriptionally active sites on the chromosome arms. DNA replication is demonstrated to remove ectopically loaded, non-centromeric CENP-A. In contrast, tethering of centromeric CENP-A to the sites of DNA replication through the constitutive centromere associated network (CCAN) is shown to enable precise reloading of centromere-bound CENP-A onto the same DNA sequences as in its initial prereplication loading. Thus, DNA replication acts as an error correction mechanism for maintaining centromere identity through its removal of non-centromeric CENP-A coupled with CCAN-mediated retention and precise reloading of centromeric CENP-A.


Assuntos
Proteína Centromérica A/genética , Centrômero/genética , Cromossomos Humanos/genética , Replicação do DNA/genética , Cromatina/genética , Proteínas Cromossômicas não Histona/genética , Fase G1/genética , Células HeLa , Histonas/genética , Humanos , Nucleossomos/genética
12.
Nat Neurosci ; 22(2): 180-190, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30643298

RESUMO

Amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD) are associated with loss of nuclear transactive response DNA-binding protein 43 (TDP-43). Here we identify that TDP-43 regulates expression of the neuronal growth-associated factor stathmin-2. Lowered TDP-43 levels, which reduce its binding to sites within the first intron of stathmin-2 pre-messenger RNA, uncover a cryptic polyadenylation site whose utilization produces a truncated, non-functional mRNA. Reduced stathmin-2 expression is found in neurons trans-differentiated from patient fibroblasts expressing an ALS-causing TDP-43 mutation, in motor cortex and spinal motor neurons from patients with sporadic ALS and familial ALS with GGGGCC repeat expansion in the C9orf72 gene, and in induced pluripotent stem cell (iPSC)-derived motor neurons depleted of TDP-43. Remarkably, while reduction in TDP-43 is shown to inhibit axonal regeneration of iPSC-derived motor neurons, rescue of stathmin-2 expression restores axonal regenerative capacity. Thus, premature polyadenylation-mediated reduction in stathmin-2 is a hallmark of ALS-FTD that functionally links reduced nuclear TDP-43 function to enhanced neuronal vulnerability.


Assuntos
Proteínas de Ligação a DNA/metabolismo , Proteínas de Membrana/metabolismo , Neurônios Motores/metabolismo , Degeneração Neural/metabolismo , Esclerose Lateral Amiotrófica/metabolismo , Esclerose Lateral Amiotrófica/patologia , Feminino , Humanos , Córtex Motor/metabolismo , Córtex Motor/patologia , Neurônios Motores/patologia , Degeneração Neural/patologia , Poliadenilação , Medula Espinal/metabolismo , Medula Espinal/patologia , Estatmina
13.
Nat Commun ; 9(1): 4354, 2018 10 19.
Artigo em Inglês | MEDLINE | ID: mdl-30341343

RESUMO

The mitotic checkpoint ensures accurate chromosome segregation through assembly of the mitotic checkpoint complex (MCC), a soluble inhibitor of the anaphase-promoting complex/cyclosome (APC/C) produced by unattached kinetochores. MCC is also assembled during interphase by Mad1/Mad2 bound at nuclear pores, thereby preventing premature mitotic exit prior to kinetochore maturation and checkpoint activation. Using degron tagging to rapidly deplete the AAA+ ATPase TRIP13, we show that its catalytic activity is required to maintain a pool of open-state Mad2 for MCC assembly, thereby supporting mitotic checkpoint activation, but is also required for timely mitotic exit through catalytic disassembly of MCC. Strikingly, combining TRIP13 depletion with elimination of APC15-dependent Cdc20 ubiquitination/degradation results in a complete inability to exit mitosis, even when MCC assembly at unattached kinetochores is prevented. Thus, mitotic exit requires MCC produced either in interphase or mitosis to be disassembled by TRIP13-catalyzed removal of Mad2 or APC15-driven ubiquitination/degradation of its Cdc20 subunit.


Assuntos
ATPases Associadas a Diversas Atividades Celulares/fisiologia , Ciclossomo-Complexo Promotor de Anáfase/fisiologia , Proteínas de Ciclo Celular/fisiologia , Cinetocoros/fisiologia , Pontos de Checagem da Fase M do Ciclo Celular , Mitose/fisiologia , ATPases Associadas a Diversas Atividades Celulares/genética , ATPases Associadas a Diversas Atividades Celulares/metabolismo , Ciclossomo-Complexo Promotor de Anáfase/genética , Ciclossomo-Complexo Promotor de Anáfase/metabolismo , Proteínas Cdc20/metabolismo , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Interfase , Proteínas Mad2/metabolismo
14.
Mol Ther ; 26(5): 1228-1240, 2018 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-29650467

RESUMO

CRISPR-based gene editing is a powerful technology for engineering mammalian genomes. It holds the potential as a therapeutic, although much-needed in vivo delivery systems have yet to be established. Here, using the Cpf1-crRNA (CRISPR RNA) crystal structure as a guide, we synthesized a series of systematically truncated and chemically modified crRNAs, and identify positions that are amenable to modification while retaining gene-editing activity. Modified crRNAs were designed with the same modifications that provide protection against nucleases and enable wide distribution in vivo. We show crRNAs with chemically modified terminal nucleotides are exonuclease resistant while retaining gene-editing activity. Chemically modified or DNA-substituted nucleotides at select positions and up to 70% of the crRNA DNA specificity region are also well tolerated. In addition, gene-editing activity is maintained with phosphorothioate backbone substitutions in the crRNA DNA specificity region. Finally, we demonstrate that 42-mer synthetic crRNAs from the similar CRISPR-Cas9 system are taken up by cells, an attractive property for in vivo delivery. Our study is the first to show that chemically modified crRNAs of the CRISPR-Cpf1 system can functionally replace and mediate comparable gene editing to the natural crRNA, which holds the potential for enhancing both viral- and non-viral-mediated in vivo gene editing.


Assuntos
Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Endonucleases/metabolismo , Edição de Genes , RNA Guia de Cinetoplastídeos , Animais , Sequência de Bases , Sítios de Ligação , Linhagem Celular , Linhagem Celular Tumoral , Marcação de Genes , Variação Genética , Humanos , Mamíferos , Conformação Molecular , Ligação Proteica
16.
Cell Rep ; 17(9): 2394-2404, 2016 11 22.
Artigo em Inglês | MEDLINE | ID: mdl-27880912

RESUMO

Human centromeres are defined by chromatin containing the histone H3 variant CENP-A assembled onto repetitive alphoid DNA sequences. By inducing rapid, complete degradation of endogenous CENP-A, we now demonstrate that once the first steps of centromere assembly have been completed in G1/S, continued CENP-A binding is not required for maintaining kinetochore attachment to centromeres or for centromere function in the next mitosis. Degradation of CENP-A prior to kinetochore assembly is found to block deposition of CENP-C and CENP-N, but not CENP-T, thereby producing defective kinetochores and failure of chromosome segregation. Without the continuing presence of CENP-A, CENP-B binding to alphoid DNA sequences becomes essential to preserve anchoring of CENP-C and the kinetochore to each centromere. Thus, there is a reciprocal interdependency of CENP-A chromatin and the underlying repetitive centromere DNA sequences bound by CENP-B in the maintenance of human chromosome segregation.


Assuntos
Proteína Centromérica A/metabolismo , Centrômero/metabolismo , Cinetocoros/metabolismo , Mitose , Linhagem Celular Tumoral , Proteínas Cromossômicas não Histona/metabolismo , Segregação de Cromossomos , Epigênese Genética , Humanos , Modelos Biológicos
17.
EMBO J ; 35(16): 1810-21, 2016 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-27402227

RESUMO

Membrane fusion is essential for eukaryotic life, requiring SNARE proteins to zipper up in an α-helical bundle to pull two membranes together. Here, we show that vesicle fusion can be suppressed by phosphorylation of core conserved residues inside the SNARE domain. We took a proteomics approach using a PKCB knockout mast cell model and found that the key mast cell secretory protein VAMP8 becomes phosphorylated by PKC at multiple residues in the SNARE domain. Our data suggest that VAMP8 phosphorylation reduces vesicle fusion in vitro and suppresses secretion in living cells, allowing vesicles to dock but preventing fusion with the plasma membrane. Markedly, we show that the phosphorylation motif is absent in all eukaryotic neuronal VAMPs, but present in all other VAMPs. Thus, phosphorylation of SNARE domains is a general mechanism to restrict how much cells secrete, opening the door for new therapeutic strategies for suppression of secretion.


Assuntos
Proteína Quinase C/metabolismo , Processamento de Proteína Pós-Traducional , Proteínas R-SNARE/metabolismo , Vesículas Secretórias/metabolismo , Animais , Linhagem Celular , Mastócitos/fisiologia , Fosforilação , Proteômica , Ratos
18.
Proc Natl Acad Sci U S A ; 112(51): E7110-7, 2015 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-26589814

RESUMO

Genome editing with the clustered, regularly interspaced, short palindromic repeats (CRISPR)-Cas9 nuclease system is a powerful technology for manipulating genomes, including introduction of gene disruptions or corrections. Here we develop a chemically modified, 29-nucleotide synthetic CRISPR RNA (scrRNA), which in combination with unmodified transactivating crRNA (tracrRNA) is shown to functionally replace the natural guide RNA in the CRISPR-Cas9 nuclease system and to mediate efficient genome editing in human cells. Incorporation of rational chemical modifications known to protect against nuclease digestion and stabilize RNA-RNA interactions in the tracrRNA hybridization region of CRISPR RNA (crRNA) yields a scrRNA with enhanced activity compared with the unmodified crRNA and comparable gene disruption activity to the previously published single guide RNA. Taken together, these findings provide a platform for therapeutic applications, especially for nervous system disease, using successive application of cell-permeable, synthetic CRISPR RNAs to activate and then silence Cas9 nuclease activity.


Assuntos
Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Genoma Humano , Edição de RNA , Sequência de Bases , Genes Sintéticos , Engenharia Genética , Células HEK293 , Humanos , Modelos Genéticos , Dados de Sequência Molecular , Conformação de Ácido Nucleico , RNA/química , RNA/genética , RNA/metabolismo , RNA Guia de Cinetoplastídeos/genética , RNA Guia de Cinetoplastídeos/metabolismo
19.
Dev Cell ; 33(3): 314-27, 2015 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-25942623

RESUMO

Human centromeres are specified by a stably inherited epigenetic mark that maintains centromere position and function through a two-step mechanism relying on self-templating centromeric chromatin assembled with the histone H3 variant CENP-A, followed by CENP-A-dependent nucleation of kinetochore assembly. Nevertheless, natural human centromeres are positioned within specific megabase chromosomal regions containing α-satellite DNA repeats, which contain binding sites for the DNA sequence-specific binding protein CENP-B. We now demonstrate that CENP-B directly binds both CENP-A's amino-terminal tail and CENP-C, a key nucleator of kinetochore assembly. DNA sequence-dependent binding of CENP-B within α-satellite repeats is required to stabilize optimal centromeric levels of CENP-C. Chromosomes bearing centromeres without bound CENP-B, including the human Y chromosome, are shown to mis-segregate in cells at rates several-fold higher than chromosomes with CENP-B-containing centromeres. These data demonstrate a DNA sequence-specific enhancement by CENP-B of the fidelity of epigenetically defined human centromere function.


Assuntos
Autoantígenos/metabolismo , Proteína B de Centrômero/metabolismo , Centrômero/metabolismo , Proteínas Cromossômicas não Histona/metabolismo , DNA Satélite/metabolismo , Animais , Sítios de Ligação/genética , Proteína Centromérica A , Proteína B de Centrômero/genética , Cromatina/metabolismo , Histonas/metabolismo , Humanos
20.
Mol Ther ; 21(4): 786-95, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23358186

RESUMO

Restriction factors constitute a newly appreciated line of innate immune defense, blocking viral replication inside of infected cells. In contrast to these antiviral proteins, some cellular proteins, such as the CD4, CCR5, and CXCR4 cell surface receptors, facilitate HIV replication. We have used zinc finger nucleases (ZFNs) to insert a cocktail of anti-HIV restriction factors into the CCR5 locus in a T-cell reporter line, knocking out the CCR5 gene in the process. Mirroring the logic of highly active antiretroviral therapy, this strategy provides multiple parallel blocks to infection, dramatically limiting pathways for viral escape, without relying on random integration of transgenes into the genome. Because of the combination of blocks that this strategy creates, our modified T-cell lines are robustly resistant to both CCR5-tropic (R5-tropic) and CXCR4-tropic (X4-tropic) HIV-1. While zinc finger nuclease-mediated CCR5 disruption alone, which mimics the strategy being used in clinical trials, confers 16-fold protection against R5-tropic HIV, it has no effect against X4-tropic virus. Rhesus TRIM5α, chimeric human-rhesus TRIM5α, APOBEC3G D128K, or Rev M10 alone targeted to CCR5 confers significantly improved resistance to infection by both variants compared with CCR5 disruption alone. The combination of three factors targeted to CCR5 blocks infection at multiple stages, providing virtually complete protection against infection by R5-tropic and X4-tropic HIV.


Assuntos
Infecções por HIV/imunologia , Linfócitos T/virologia , Antígenos CD4/metabolismo , Linhagem Celular , Humanos , Receptores CCR5/metabolismo , Receptores CXCR4/metabolismo , Linfócitos T/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA