Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
1.
Front Public Health ; 10: 1020850, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36388365

RESUMO

The COVID-19 pandemic led to the introduction of a range of infection prevention and control (IPC) measures that resulted in dramatic changes in people's lives however these IPC measures are not practiced consistently across the population. One predictor of an individual's responses to the pandemic is disgust sensitivity. Understanding how disgust sensitivity varies within the population could help to inform design of public health messages to promote more uniform behavioral change during future pandemics. To understand the effect of the current COVID-19 pandemic on an individual's pathogen disgust sensitivity we have compared pathogen disgust sensitivity during the current COVID-19 pandemic to baseline pathogen disgust sensitivity, determined prior to the COVID-19 pandemic, in the same sample of UK adults. We find that the COVID-19 pandemic did not alter overall pathogen disgust sensitivity suggesting that disgust sensitivity is stable despite IPC measures, public health messaging, media coverage and other factors associated with the COVID-19 pandemic.


Assuntos
COVID-19 , Asco , Adulto , Humanos , Pandemias , COVID-19/epidemiologia , Emoções/fisiologia , Reino Unido/epidemiologia
2.
Genetics ; 218(1)2021 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-33693696

RESUMO

Female mammals are functional mosaics of their parental X-linked gene expression due to X chromosome inactivation (XCI). This process inactivates one copy of the X chromosome in each cell during embryogenesis and that state is maintained clonally through mitosis. In mice, the choice of which parental X chromosome remains active is determined by the X chromosome controlling element (Xce), which has been mapped to a 176-kb candidate interval. A series of functional Xce alleles has been characterized or inferred for classical inbred strains based on biased, or skewed, inactivation of the parental X chromosomes in crosses between strains. To further explore the function structure basis and location of the Xce, we measured allele-specific expression of X-linked genes in a large population of F1 females generated from Collaborative Cross (CC) strains. Using published sequence data and applying a Bayesian "Pólya urn" model of XCI skew, we report two major findings. First, inter-individual variability in XCI suggests mouse epiblasts contain on average 20-30 cells contributing to brain. Second, CC founder strain NOD/ShiLtJ has a novel and unique functional allele, Xceg, that is the weakest in the Xce allelic series. Despite phylogenetic analysis confirming that NOD/ShiLtJ carries a haplotype almost identical to the well-characterized C57BL/6J (Xceb), we observed unexpected patterns of XCI skewing in females carrying the NOD/ShiLtJ haplotype within the Xce. Copy number variation is common at the Xce locus and we conclude that the observed allelic series is a product of independent and recurring duplications shared between weak Xce alleles.


Assuntos
Mecanismo Genético de Compensação de Dose , Inativação do Cromossomo X/genética , Cromossomo X/genética , Alelos , Animais , Teorema de Bayes , Mapeamento Cromossômico/métodos , Variações do Número de Cópias de DNA/genética , Genes Ligados ao Cromossomo X/genética , Haplótipos , Camundongos , Camundongos da Linhagem 129 , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos NOD , Filogenia , RNA Longo não Codificante/genética
3.
Genetics ; 216(4): 905-930, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33067325

RESUMO

The laboratory mouse is the most widely used animal model for biomedical research, due in part to its well-annotated genome, wealth of genetic resources, and the ability to precisely manipulate its genome. Despite the importance of genetics for mouse research, genetic quality control (QC) is not standardized, in part due to the lack of cost-effective, informative, and robust platforms. Genotyping arrays are standard tools for mouse research and remain an attractive alternative even in the era of high-throughput whole-genome sequencing. Here, we describe the content and performance of a new iteration of the Mouse Universal Genotyping Array (MUGA), MiniMUGA, an array-based genetic QC platform with over 11,000 probes. In addition to robust discrimination between most classical and wild-derived laboratory strains, MiniMUGA was designed to contain features not available in other platforms: (1) chromosomal sex determination, (2) discrimination between substrains from multiple commercial vendors, (3) diagnostic SNPs for popular laboratory strains, (4) detection of constructs used in genetically engineered mice, and (5) an easy-to-interpret report summarizing these results. In-depth annotation of all probes should facilitate custom analyses by individual researchers. To determine the performance of MiniMUGA, we genotyped 6899 samples from a wide variety of genetic backgrounds. The performance of MiniMUGA compares favorably with three previous iterations of the MUGA family of arrays, both in discrimination capabilities and robustness. We have generated publicly available consensus genotypes for 241 inbred strains including classical, wild-derived, and recombinant inbred lines. Here, we also report the detection of a substantial number of XO and XXY individuals across a variety of sample types, new markers that expand the utility of reduced complexity crosses to genetic backgrounds other than C57BL/6, and the robust detection of 17 genetic constructs. We provide preliminary evidence that the array can be used to identify both partial sex chromosome duplication and mosaicism, and that diagnostic SNPs can be used to determine how long inbred mice have been bred independently from the relevant main stock. We conclude that MiniMUGA is a valuable platform for genetic QC, and an important new tool to increase the rigor and reproducibility of mouse research.


Assuntos
Estudo de Associação Genômica Ampla/métodos , Técnicas de Genotipagem/métodos , Camundongos/genética , Análise de Sequência com Séries de Oligonucleotídeos/métodos , Animais , Feminino , Estudo de Associação Genômica Ampla/normas , Genótipo , Técnicas de Genotipagem/normas , Masculino , Camundongos Endogâmicos C57BL , Análise de Sequência com Séries de Oligonucleotídeos/normas , Polimorfismo Genético , Reprodutibilidade dos Testes , Processos de Determinação Sexual
4.
Infect Immun ; 87(4)2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30692178

RESUMO

G protein-coupled receptors contribute to host defense across the animal kingdom, transducing many signals involved in both vertebrate and invertebrate immune responses. While it has become well established that the nematode worm Caenorhabditis elegans triggers innate immune responses following infection with numerous bacterial, fungal, and viral pathogens, the mechanisms by which C. elegans recognizes these pathogens have remained somewhat more elusive. C. elegans G protein-coupled receptors have been implicated in recognizing pathogen-associated damage and activating downstream host immune responses. Here we identify and characterize a novel G protein-coupled receptor required to regulate the C. elegans response to infection with Microbacterium nematophilum We show that this receptor, which we designate pathogen clearance-defective receptor 1 (PCDR-1), is required for efficient pathogen clearance following infection. PCDR-1 acts upstream of multiple G proteins, including the C. elegans Gαq ortholog, EGL-30, in rectal epithelial cells to promote pathogen clearance via a novel mechanism.


Assuntos
Proteínas de Caenorhabditis elegans/imunologia , Caenorhabditis elegans/imunologia , Caenorhabditis elegans/microbiologia , Receptores Acoplados a Proteínas G/imunologia , Actinobacteria/fisiologia , Animais , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/genética , Receptores Acoplados a Proteínas G/genética
5.
PLoS One ; 13(9): e0204057, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30240421

RESUMO

The small GTPase RhoA plays a crucial role in the regulation of neuronal signalling to generate behaviour. In the developing nervous system RhoA is known to regulate the actin cytoskeleton, however the effectors of RhoA-signalling in adult neurons remain largely unidentified. We have previously shown that activation of the RhoA ortholog (RHO-1) in C. elegans cholinergic motor neurons triggers hyperactivity of these neurons and loopy locomotion with exaggerated body bends. This is achieved in part through increased diacylglycerol (DAG) levels and the recruitment of the synaptic vesicle protein UNC-13 to synaptic release sites, however other pathways remain to be identified. Dopamine, which is negatively regulated by the dopamine re-uptake transporter (DAT), has a central role in modulating locomotion in both humans and C. elegans. In this study we identify a new pathway in which RHO-1 regulates locomotory behaviour by repressing dopamine signalling, via DAT-1, linking these two pathways together. We observed an upregulation of dat-1 expression when RHO-1 is activated and show that loss of DAT-1 inhibits the loopy locomotion phenotype caused by RHO-1 activation. Reducing dopamine signalling in dat-1 mutants through mutations in genes involved in dopamine synthesis or in the dopamine receptor DOP-1 restores the ability of RHO-1 to trigger loopy locomotion in dat-1 mutants. Taken together, we show that negative regulation of dopamine signalling via DAT-1 is necessary for the neuronal RHO-1 pathway to regulate locomotion.


Assuntos
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/metabolismo , Neurônios Colinérgicos/metabolismo , Dopamina/metabolismo , Locomoção , Neurônios Motores/metabolismo , Transdução de Sinais , Proteínas rho de Ligação ao GTP/metabolismo , Acetilcolina/metabolismo , Animais , Proteínas de Caenorhabditis elegans/genética , Mutação/genética , Neuropeptídeos/metabolismo , Fenótipo , Transcrição Gênica , Regulação para Cima/genética
6.
G3 (Bethesda) ; 8(11): 3447-3468, 2018 11 06.
Artigo em Inglês | MEDLINE | ID: mdl-30171036

RESUMO

Parent-of-origin effects (POE) in mammals typically arise from maternal effects or imprinting. In some instances, such POE have been associated with psychiatric disorders, as well as with changes in a handful of animal behaviors. However, POE on complex traits such as behavior remain largely uncharacterized. Moreover, although both behavior and epigenetic effects are known to be modified by perinatal environmental exposures such as nutrient deficiency, the architecture of such environment-by-POE is mostly unexplored. To study POE and environment-by-POE, we employ a relatively neglected but especially powerful experimental system for POE-detection: reciprocal F1 hybrids (RF1s). We exposed female NOD/ShiLtJ×C57Bl/6J and C57Bl/6J×NOD/ShiLtJ mice, perinatally, to one of four different diets, then after weaning recorded a set of behaviors that model psychiatric disease. Whole-brain microarray expression data revealed an imprinting-enriched set of 15 genes subject to POE. The most-significant expression POE, on the non-imprinted gene Carmil1 (a.k.a. Lrrc16a), was validated using qPCR in the same and in a new set of mice. Several behaviors, especially locomotor behaviors, also showed POE. Bayesian mediation analysis suggested Carmil1 expression suppresses behavioral POE, and that the imprinted gene Airn suppresses POE on Carmil1 expression. A suggestive diet-by-POE was observed on percent center time in the open field test, and a significant diet-by-POE was observed on one imprinted gene, Mir341, and on 16 non-imprinted genes. The relatively small, tractable set of POE and diet-by-POE detected on behavior and expression here motivates further studies examining such effects across RF1s on multiple genetic backgrounds.


Assuntos
Comportamento Animal , Dieta , Impressão Genômica , Camundongos Endogâmicos C57BL/genética , Camundongos Endogâmicos NOD/genética , Animais , Encéfalo/metabolismo , Feminino , Masculino , Estresse Psicológico , Análise Serial de Tecidos
7.
Physiol Rep ; 6(12): e13716, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29924460

RESUMO

Exercise results in beneficial health outcomes and protects against a variety of chronic diseases. However, U.S. exercise guidelines recommend identical exercise programs for everyone, despite individual variation in responses to these programs, including paradoxical fat gain. Experimental models of exercise-induced paradoxical outcomes may enable the dissection of underlying physiological mechanisms as well as the evaluation of potential interventions. Whereas several studies have identified individual mice exhibiting paradoxical fat gain following exercise, no systematic effort has been conducted to identify and characterize models of paradoxical response. Strains from the Collaborative Cross (CC) genetic reference population were used due to its high levels of genetic variation, its reproducible nature, and the observation that the CC is a rich source of novel disease models, to assess the impact genetic background has on exercise responses. We identified the strain CC002/Unc as an exercise-induced paradoxical fat response model in a controlled voluntary exercise study across multiple ages in female mice. We also found sex and genetic differences were consistent with this pattern in a study of forced exercise programs. These results provide a novel model for studies to determine the mechanisms behind paradoxical metabolic responses to exercise, and enable development of more rational personalized exercise recommendations based on factors such as age, sex, and genetic background.


Assuntos
Tecido Adiposo/fisiologia , Modelos Animais de Doenças , Condicionamento Físico Animal/fisiologia , Animais , Biometria/métodos , Composição Corporal/fisiologia , Peso Corporal/fisiologia , Feminino , Masculino , Camundongos Endogâmicos , Esforço Físico/fisiologia , Caracteres Sexuais
8.
Artigo em Inglês | MEDLINE | ID: mdl-29866922

RESUMO

One way in which animals minimize the risk of infection is to reduce their contact with contaminated food. Here, we establish a model of pathogen-contaminated food avoidance using the nematode worm Caernorhabditis elegans We find that avoidance of pathogen-contaminated food protects C. elegans from the deleterious effects of infection and, using genetic approaches, demonstrate that multiple sensory neurons are required for this avoidance behaviour. In addition, our results reveal that the avoidance of contaminated food requires bacterial adherence to non-neuronal cells in the tail of C. elegans that are also required for the cellular immune response. Previous studies in C. elegans have contributed significantly to our understanding of molecular and cellular basis of host-pathogen interactions and our model provides a unique opportunity to gain basic insights into how animals avoid contaminated food.This article is part of the Theo Murphy meeting issue 'Evolution of pathogen and parasite avoidance behaviours'.


Assuntos
Aprendizagem da Esquiva , Caenorhabditis elegans/fisiologia , Interações Hospedeiro-Patógeno , Transdução de Sinais , Actinomycetales/fisiologia , Animais , Sinais (Psicologia) , Escherichia coli/fisiologia , Microbiologia de Alimentos , Células Receptoras Sensoriais
9.
Artigo em Inglês | MEDLINE | ID: mdl-29866923

RESUMO

All free-living animals are subject to intense selection pressure from parasites and pathogens resulting in behavioural adaptations that can help potential hosts to avoid falling prey to parasites. This special issue on the evolution of parasite avoidance behaviour was compiled following a Royal Society meeting in 2017. Here we have assembled contributions from a wide range of disciplines including genetics, ecology, parasitology, behavioural science, ecology, psychology and epidemiology on the disease avoidance behaviour of a wide range of species. Taking an interdisciplinary and cross-species perspective allows us to sketch out the strategies, mechanisms and consequences of parasite avoidance and to identify gaps and further questions. Parasite avoidance strategies must include avoiding parasites themselves and cues to their presence in conspecifics, heterospecifics, foods and habitat. Further, parasite avoidance behaviour can be directed at constructing parasite-retardant niches. Mechanisms of parasite avoidance behaviour are generally less well characterized, though nematodes, rodents and human studies are beginning to elucidate the genetic, hormonal and neural architecture that allows animals to recognize and respond to cues of parasite threat. While the consequences of infection are well characterized in humans, we still have much to learn about the epidemiology of parasites of other species, as well as the trade-offs that hosts make in parasite defence versus other beneficial investments like mating and foraging. Finally, in this overview we conclude that it is legitimate to use the word 'disgust' to describe parasite avoidance systems, in the same way that 'fear' is used to describe animal predator avoidance systems. Understanding disgust across species offers an excellent system for investigating the strategies, mechanisms and consequences of behaviour and could be a vital contribution towards the understanding and conservation of our planet's ecosystems.This article is part of the Theo Murphy meeting issue 'Evolution of pathogen and parasite avoidance behaviours'.


Assuntos
Aprendizagem da Esquiva , Evolução Biológica , Interações Hospedeiro-Patógeno , Invertebrados/fisiologia , Vertebrados/fisiologia , Animais , Interações Hospedeiro-Parasita , Humanos , Invertebrados/parasitologia , Vertebrados/parasitologia
10.
Genetics ; 206(2): 537-556, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-28592495

RESUMO

The Collaborative Cross (CC) is a multiparent panel of recombinant inbred (RI) mouse strains derived from eight founder laboratory strains. RI panels are popular because of their long-term genetic stability, which enhances reproducibility and integration of data collected across time and conditions. Characterization of their genomes can be a community effort, reducing the burden on individual users. Here we present the genomes of the CC strains using two complementary approaches as a resource to improve power and interpretation of genetic experiments. Our study also provides a cautionary tale regarding the limitations imposed by such basic biological processes as mutation and selection. A distinct advantage of inbred panels is that genotyping only needs to be performed on the panel, not on each individual mouse. The initial CC genome data were haplotype reconstructions based on dense genotyping of the most recent common ancestors (MRCAs) of each strain followed by imputation from the genome sequence of the corresponding founder inbred strain. The MRCA resource captured segregating regions in strains that were not fully inbred, but it had limited resolution in the transition regions between founder haplotypes, and there was uncertainty about founder assignment in regions of limited diversity. Here we report the whole genome sequence of 69 CC strains generated by paired-end short reads at 30× coverage of a single male per strain. Sequencing leads to a substantial improvement in the fine structure and completeness of the genomes of the CC. Both MRCAs and sequenced samples show a significant reduction in the genome-wide haplotype frequencies from two wild-derived strains, CAST/EiJ and PWK/PhJ. In addition, analysis of the evolution of the patterns of heterozygosity indicates that selection against three wild-derived founder strains played a significant role in shaping the genomes of the CC. The sequencing resource provides the first description of tens of thousands of new genetic variants introduced by mutation and drift in the CC genomes. We estimate that new SNP mutations are accumulating in each CC strain at a rate of 2.4 ± 0.4 per gigabase per generation. The fixation of new mutations by genetic drift has introduced thousands of new variants into the CC strains. The majority of these mutations are novel compared to currently sequenced laboratory stocks and wild mice, and some are predicted to alter gene function. Approximately one-third of the CC inbred strains have acquired large deletions (>10 kb) many of which overlap known coding genes and functional elements. The sequence of these mice is a critical resource to CC users, increases threefold the number of mouse inbred strain genomes available publicly, and provides insight into the effect of mutation and drift on common resources.


Assuntos
Deriva Genética , Genoma/genética , Camundongos Endogâmicos/genética , Locos de Características Quantitativas/genética , Animais , Mapeamento Cromossômico , Cruzamentos Genéticos , Genótipo , Haplótipos , Masculino , Camundongos , Mutação , Polimorfismo de Nucleotídeo Único
11.
Physiol Rep ; 4(21)2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27905293

RESUMO

Aging is associated with declining exercise and unhealthy changes in body composition. Exercise ameliorates certain adverse age-related physiological changes and protects against many chronic diseases. Despite these benefits, willingness to exercise and physiological responses to exercise vary widely, and long-term exercise and its benefits are difficult and costly to measure in humans. Furthermore, physiological effects of aging in humans are confounded with changes in lifestyle and environment. We used C57BL/6J mice to examine long-term patterns of exercise during aging and its physiological effects in a well-controlled environment. One-year-old male (n = 30) and female (n = 30) mice were divided into equal size cohorts and aged for an additional year. One cohort was given access to voluntary running wheels while another was denied exercise other than home cage movement. Body mass, composition, and metabolic traits were measured before, throughout, and after 1 year of treatment. Long-term exercise significantly prevented gains in body mass and body fat, while preventing loss of lean mass. We observed sex-dependent differences in body mass and composition trajectories during aging. Wheel running (distance, speed, duration) was greater in females than males and declined with age. We conclude that long-term exercise may serve as a preventive measure against age-related weight gain and body composition changes, and that mouse inbred strains can be used to characterize effects of long-term exercise and factors (e.g. sex, age) modulating these effects. These findings will facilitate studies on relationships between exercise and health in aging populations, including genetic predisposition and genotype-by-environment interactions.


Assuntos
Envelhecimento/metabolismo , Composição Corporal/fisiologia , Atividade Motora/fisiologia , Condicionamento Físico Animal/fisiologia , Caracteres Sexuais , Tecido Adiposo/fisiologia , Envelhecimento/fisiologia , Animais , Peso Corporal , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Estudos Observacionais como Assunto
12.
G3 (Bethesda) ; 6(12): 3893-3902, 2016 12 07.
Artigo em Inglês | MEDLINE | ID: mdl-27694113

RESUMO

Multi-parent populations (MPPs) capture and maintain the genetic diversity from multiple inbred founder strains to provide a resource for high-resolution genetic mapping through the accumulation of recombination events over many generations. Breeding designs that maintain a large effective population size with randomized assignment of breeders at each generation can minimize the impact of selection, inbreeding, and genetic drift on allele frequencies. Small deviations from expected allele frequencies will have little effect on the power and precision of genetic analysis, but a major distortion could result in reduced power and loss of important functional alleles. We detected strong transmission ratio distortion in the Diversity Outbred (DO) mouse population on chromosome 2, caused by meiotic drive favoring transmission of the WSB/EiJ allele at the R2d2 locus. The distorted region harbors thousands of polymorphisms derived from the seven non-WSB founder strains and many of these would be lost if the sweep was allowed to continue. To ensure the utility of the DO population to study genetic variation on chromosome 2, we performed an artificial selection against WSB/EiJ alleles at the R2d2 locus. Here, we report that we have purged the WSB/EiJ allele from the drive locus while preserving WSB/EiJ alleles in the flanking regions. We observed minimal disruption to allele frequencies across the rest of the autosomal genome. However, there was a shift in haplotype frequencies of the mitochondrial genome and an increase in the rate of an unusual sex chromosome aneuploidy. The DO population has been restored to genome-wide utility for genetic analysis, but our experience underscores that vigilant monitoring of similar genetic resource populations is needed to ensure their long-term utility.


Assuntos
Cruzamento , Cruzamentos Genéticos , Variação Genética , Alelos , Animais , Biologia Computacional/métodos , Feminino , Frequência do Gene , Loci Gênicos , Genética Populacional , Genoma , Genômica/métodos , Haplótipos , Masculino , Camundongos , Mitocôndrias/genética , Anotação de Sequência Molecular , Mutação , Fenótipo , Seleção Genética , Aberrações dos Cromossomos Sexuais , Razão de Masculinidade
13.
Genetics ; 204(1): 267-85, 2016 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-27371833

RESUMO

Gene duplication and loss are major sources of genetic polymorphism in populations, and are important forces shaping the evolution of genome content and organization. We have reconstructed the origin and history of a 127-kbp segmental duplication, R2d, in the house mouse (Mus musculus). R2d contains a single protein-coding gene, Cwc22 De novo assembly of both the ancestral (R2d1) and the derived (R2d2) copies reveals that they have been subject to nonallelic gene conversion events spanning tens of kilobases. R2d2 is also a hotspot for structural variation: its diploid copy number ranges from zero in the mouse reference genome to >80 in wild mice sampled from around the globe. Hemizygosity for high copy-number alleles of R2d2 is associated in cis with meiotic drive; suppression of meiotic crossovers; and copy-number instability, with a mutation rate in excess of 1 per 100 transmissions in some laboratory populations. Our results provide a striking example of allelic diversity generated by duplication and demonstrate the value of de novo assembly in a phylogenetic context for understanding the mutational processes affecting duplicate genes.


Assuntos
Evolução Biológica , Duplicação Gênica , Proteínas Nucleares/genética , Duplicações Segmentares Genômicas , Alelos , Animais , Animais Selvagens/genética , Evolução Molecular , Conversão Gênica , Dosagem de Genes , Genes Duplicados , Variação Genética , Camundongos , Filogenia , Proteínas de Ligação a RNA
14.
Mol Biol Evol ; 33(6): 1381-95, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-26882987

RESUMO

A selective sweep is the result of strong positive selection driving newly occurring or standing genetic variants to fixation, and can dramatically alter the pattern and distribution of allelic diversity in a population. Population-level sequencing data have enabled discoveries of selective sweeps associated with genes involved in recent adaptations in many species. In contrast, much debate but little evidence addresses whether "selfish" genes are capable of fixation-thereby leaving signatures identical to classical selective sweeps-despite being neutral or deleterious to organismal fitness. We previously described R2d2, a large copy-number variant that causes nonrandom segregation of mouse Chromosome 2 in females due to meiotic drive. Here we show population-genetic data consistent with a selfish sweep driven by alleles of R2d2 with high copy number (R2d2(HC)) in natural populations. We replicate this finding in multiple closed breeding populations from six outbred backgrounds segregating for R2d2 alleles. We find that R2d2(HC) rapidly increases in frequency, and in most cases becomes fixed in significantly fewer generations than can be explained by genetic drift. R2d2(HC) is also associated with significantly reduced litter sizes in heterozygous mothers, making it a true selfish allele. Our data provide direct evidence of populations actively undergoing selfish sweeps, and demonstrate that meiotic drive can rapidly alter the genomic landscape in favor of mutations with neutral or even negative effects on overall Darwinian fitness. Further study will reveal the incidence of selfish sweeps, and will elucidate the relative contributions of selfish genes, adaptation and genetic drift to evolution.


Assuntos
Proteínas Nucleares/genética , Proteínas de Ligação a RNA/genética , Sequências Repetitivas de Ácido Nucleico , Adaptação Fisiológica/genética , Alelos , Animais , Evolução Biológica , Variações do Número de Cópias de DNA/genética , Evolução Molecular , Feminino , Variação Genética , Genética Populacional , Masculino , Camundongos , Modelos Genéticos , Mutação , Seleção Genética
15.
PLoS Genet ; 11(2): e1004850, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25679959

RESUMO

Significant departures from expected Mendelian inheritance ratios (transmission ratio distortion, TRD) are frequently observed in both experimental crosses and natural populations. TRD on mouse Chromosome (Chr) 2 has been reported in multiple experimental crosses, including the Collaborative Cross (CC). Among the eight CC founder inbred strains, we found that Chr 2 TRD was exclusive to females that were heterozygous for the WSB/EiJ allele within a 9.3 Mb region (Chr 2 76.9 - 86.2 Mb). A copy number gain of a 127 kb-long DNA segment (designated as responder to drive, R2d) emerged as the strongest candidate for the causative allele. We mapped R2d sequences to two loci within the candidate interval. R2d1 is located near the proximal boundary, and contains a single copy of R2d in all strains tested. R2d2 maps to a 900 kb interval, and the number of R2d copies varies from zero in classical strains (including the mouse reference genome) to more than 30 in wild-derived strains. Using real-time PCR assays for the copy number, we identified a mutation (R2d2WSBdel1) that eliminates the majority of the R2d2WSB copies without apparent alterations of the surrounding WSB/EiJ haplotype. In a three-generation pedigree segregating for R2d2WSBdel1, the mutation is transmitted to the progeny and Mendelian segregation is restored in females heterozygous for R2d2WSBdel1, thus providing direct evidence that the copy number gain is causal for maternal TRD. We found that transmission ratios in R2d2WSB heterozygous females vary between Mendelian segregation and complete distortion depending on the genetic background, and that TRD is under genetic control of unlinked distorter loci. Although the R2d2WSB transmission ratio was inversely correlated with average litter size, several independent lines of evidence support the contention that female meiotic drive is the cause of the distortion. We discuss the implications and potential applications of this novel meiotic drive system.


Assuntos
Variações do Número de Cópias de DNA/genética , Genômica , Padrões de Herança/genética , Meiose/genética , Alelos , Animais , Cromossomos/genética , Cruzamentos Genéticos , Feminino , Técnicas de Genotipagem , Haplótipos/genética , Masculino , Camundongos , Mutação
16.
Curr Biol ; 24(21): 2598-605, 2014 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-25447992

RESUMO

During animal cell division, an actin-based ring cleaves the cell into two. Problems with this process can cause chromosome missegregation and defects in cytoplasmic inheritance and the partitioning of organelles, which in turn are associated with human diseases. Although much is known about how chromosome segregation is coupled to cell division, the way organelles coordinate their inheritance during partitioning to daughter cells is less well understood. Here, using a high-content live-imaging small interfering RNA screen, we identify Myosin-XIX (Myo19) as a novel regulator of cell division. Previously, this actin-based motor was shown to control the interphase movement of mitochondria. Our analysis shows that Myo19 is indeed localized to mitochondria and that its silencing leads to defects in the distribution of mitochondria within cells and in mitochondrial partitioning at division. Furthermore, many Myo19 RNAi cells undergo stochastic division failure--a phenotype that can be mimicked using a treatment that blocks mitochondrial fission and rescued by decreasing mitochondrial fusion, implying that mitochondria can physically interfere with cytokinesis. Strikingly, using live imaging we also observe the inappropriate movement of mitochondria to the poles of spindles in cells depleted for Myo19 as they enter anaphase. Since this phenocopies the results of an acute loss of actin filaments in anaphase, these data support a model whereby the Myo19 actin-based motor helps to control mitochondrial movement to ensure their faithful segregation during division. The presence of DNA within mitochondria makes their inheritance an especially important aspect of symmetrical cell division.


Assuntos
Divisão Celular/fisiologia , Mitocôndrias/metabolismo , Miosinas/fisiologia , Actinas/metabolismo , Citocinese , Técnicas de Silenciamento de Genes , Células HeLa , Humanos , Mitocôndrias/ultraestrutura , Dinâmica Mitocondrial , Miosinas/genética , Miosinas/metabolismo
17.
PLoS Pathog ; 9(12): e1003787, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24348250

RESUMO

The nervous and immune systems influence each other, allowing animals to rapidly protect themselves from changes in their internal and external environment. However, the complex nature of these systems in mammals makes it difficult to determine how neuronal signaling influences the immune response. Here we show that serotonin, synthesized in Caenorhabditis elegans chemosensory neurons, modulates the immune response. Serotonin released from these cells acts, directly or indirectly, to regulate G-protein signaling in epithelial cells. Signaling in these cells is required for the immune response to infection by the natural pathogen Microbacterium nematophilum. Here we show that serotonin signaling suppresses the innate immune response and limits the rate of pathogen clearance. We show that C. elegans uses classical neurotransmitters to alter the immune response. Serotonin released from sensory neurons may function to modify the immune system in response to changes in the animal's external environment such as the availability, or quality, of food.


Assuntos
Proteínas de Caenorhabditis elegans/genética , Caenorhabditis elegans/imunologia , Células Epiteliais/imunologia , Subunidades alfa Gi-Go de Proteínas de Ligação ao GTP/genética , Imunidade Inata/genética , Proteínas RGS/genética , Neurônios Serotoninérgicos/imunologia , Animais , Animais Geneticamente Modificados , Caenorhabditis elegans/genética , Caenorhabditis elegans/microbiologia , Proteínas de Caenorhabditis elegans/metabolismo , Células Epiteliais/metabolismo , Subunidades alfa Gi-Go de Proteínas de Ligação ao GTP/metabolismo , Proteínas de Ligação ao GTP/genética , Proteínas de Ligação ao GTP/metabolismo , Regulação da Expressão Gênica , Imunidade Inata/efeitos dos fármacos , Proteínas RGS/metabolismo , Células Receptoras Sensoriais/efeitos dos fármacos , Células Receptoras Sensoriais/metabolismo , Serotonina/farmacologia , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/genética , Transdução de Sinais/imunologia
18.
PLoS Pathog ; 8(2): e1002530, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22359503

RESUMO

Following pathogen infection the hosts' nervous and immune systems react with coordinated responses to the danger. A key question is how the neuronal and immune responses to pathogens are coordinated, are there common signaling pathways used by both responses? Using C. elegans we show that infection by pathogenic strains of M. nematophilum, but not exposure to avirulent strains, triggers behavioral and immune responses both of which require a conserved Gαq-RhoGEF Trio-Rho signaling pathway. Upon infection signaling by the Gαq pathway within cholinergic motorneurons is necessary and sufficient to increase release of the neurotransmitter acetylcholine and increase locomotion rates and these behavioral changes result in C. elegans leaving lawns of M. nematophilum. In the immune response to infection signaling by the Gαq pathway within rectal epithelial cells is necessary and sufficient to cause changes in cell morphology resulting in tail swelling that limits the infection. These Gαq mediated behavioral and immune responses to infection are separate, act in a cell autonomous fashion and activation of this pathway in the appropriate cells can trigger these responses in the absence of infection. Within the rectal epithelium the Gαq signaling pathway cooperates with a Ras signaling pathway to activate a Raf-ERK-MAPK pathway to trigger the cell morphology changes, whereas in motorneurons Gαq signaling triggers behavioral responses independent of Ras signaling. Thus, a conserved Gαq pathway cooperates with cell specific factors in the nervous and immune systems to produce appropriate responses to pathogen. Thus, our data suggests that ligands for Gq coupled receptors are likely to be part of the signals generated in response to M. nematophilum infection.


Assuntos
Caenorhabditis elegans/metabolismo , Infecções por Corynebacterium/metabolismo , Subunidades alfa Gq-G11 de Proteínas de Ligação ao GTP/metabolismo , Transdução de Sinais/imunologia , Proteína rhoA de Ligação ao GTP/metabolismo , Animais , Animais Geneticamente Modificados , Comportamento Animal/fisiologia , Caenorhabditis elegans/imunologia , Infecções por Corynebacterium/imunologia , Subunidades alfa Gq-G11 de Proteínas de Ligação ao GTP/imunologia , Proteína rhoA de Ligação ao GTP/imunologia
19.
Worm ; 1(4): 196-201, 2012 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-24058848

RESUMO

Animals have evolved multiple strategies for coping with the presence of pathogenic microbes. The best characterized is the immune response where animals activate their physical and cellular defenses to respond to invading microorganisms. However, behavioral changes can also be triggered by exposure to microbes and play an important role in defending many species, including humans, from pathogen attack. In our recent study we demonstrate that, following infection, C. elegans uses the same G-protein signaling pathway in neurons and epithelial cells to coordinate avoidance behaviors and immune responses. Coordination of these responses allows animals to mount an immune response to the immediate threat while simultaneously taking action to remove the pathogen, however, the complicated nature of the mammalian brain and immune system has made it difficult to identify the molecular mechanisms mediating these interactions. With its simple, well described, nervous system and a rapidly growing understanding of its immune system, C. elegans has emerged as an excellent model to study the mechanisms by which animals recognize pathogens and coordinate behavioral and immune responses to infection.

20.
PLoS One ; 6(2): e17265, 2011 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-21387015

RESUMO

The Rho family of small GTPases are essential during early embryonic development making it difficult to study their functions in adult animals. Using inducible transgenes expressing either a constitutively active version of the single C. elegans Rho ortholog, RHO-1, or an inhibitor of endogenous Rho (C3 transferase), we demonstrate multiple defects caused by altering Rho signaling in adult C. elegans. Changes in RHO-1 signaling in cholinergic neurons affected locomotion, pharyngeal pumping and fecundity. Changes in RHO-1 signaling outside the cholinergic neurons resulted in defective defecation, ovulation, and changes in C. elegans body morphology. Finally both increased and decreased RHO-1 signaling in adults resulted in death within hours. The multiple post-developmental roles for Rho in C. elegans demonstrate that RhoA signaling pathways continue to be used post-developmentally and the resulting phenotypes provide an opportunity to further study post-developmental Rho signaling pathways using genetic screens.


Assuntos
Comportamento Animal/fisiologia , Caenorhabditis elegans/genética , Caenorhabditis elegans/fisiologia , Fertilidade/genética , Proteína rhoA de Ligação ao GTP/fisiologia , Fatores Etários , Envelhecimento/genética , Envelhecimento/metabolismo , Envelhecimento/fisiologia , Animais , Animais Geneticamente Modificados , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/fisiologia , Fertilidade/fisiologia , Engasgo/fisiologia , Regulação da Expressão Gênica/genética , Resposta ao Choque Térmico/genética , Resposta ao Choque Térmico/fisiologia , Transdução de Sinais/genética , Transdução de Sinais/fisiologia , Proteínas rho de Ligação ao GTP/genética , Proteínas rho de Ligação ao GTP/metabolismo , Proteínas rho de Ligação ao GTP/fisiologia , Proteína rhoA de Ligação ao GTP/genética , Proteína rhoA de Ligação ao GTP/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA