Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Elife ; 122023 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-36621919

RESUMO

Bidirectional DNA replication complexes initiated from the same origin remain colocalized in a factory configuration for part or all their lifetimes. However, there is little evidence that sister replisomes are functionally interdependent, and the consequence of factory replication is unknown. Here, we investigated the functional relationship between sister replisomes in Escherichia coli, which naturally exhibits both factory and solitary configurations in the same replication cycle. Using an inducible transcription factor roadblocking system, we found that blocking one replisome caused a significant decrease in overall progression and velocity of the sister replisome. Remarkably, progression was impaired only if the block occurred while sister replisomes were still in a factory configuration - blocking one fork had no significant effect on the other replisome when sister replisomes were physically separate. Disruption of factory replication also led to increased fork stalling and requirement of fork restart mechanisms. These results suggest that physical association between sister replisomes is important for establishing an efficient and uninterrupted replication program. We discuss the implications of our findings on mechanisms of replication factory structure and function, and cellular strategies of replicating problematic DNA such as highly transcribed segments.


Assuntos
Replicação do DNA , Escherichia coli , Escherichia coli/genética , Escherichia coli/metabolismo , Cromossomos/metabolismo , DNA , Proteínas de Ligação a DNA/metabolismo
2.
Nucleic Acids Res ; 50(8): 4436-4449, 2022 05 06.
Artigo em Inglês | MEDLINE | ID: mdl-35420137

RESUMO

DNA supercoiling is a key regulator of all DNA metabolic processes including replication, transcription, and recombination, yet a reliable genomic assay for supercoiling is lacking. Here, we present a robust and flexible method (Psora-seq) to measure whole-genome supercoiling at high resolution. Using this tool in Escherichia coli, we observe a supercoiling landscape that is well correlated to transcription. Supercoiling twin-domains generated by RNA polymerase complexes span 25 kb in each direction - an order of magnitude farther than previous measurements in any organism. Thus, ribosomal and many other highly expressed genes strongly affect the topology of about 40 neighboring genes each, creating highly integrated gene circuits. Genomic patterns of supercoiling revealed by Psora-seq could be aptly predicted from modeling based on gene expression levels alone, indicating that transcription is the major determinant of chromosome supercoiling. Large-scale supercoiling patterns were highly symmetrical between left and right chromosome arms (replichores), indicating that DNA replication also strongly influences supercoiling. Skew in the axis of symmetry from the natural ori-ter axis supports previous indications that the rightward replication fork is delayed several minutes after initiation. Implications of supercoiling on DNA replication and chromosome domain structure are discussed.


Assuntos
DNA Super-Helicoidal , Ficusina , Cromossomos Bacterianos/genética , Cromossomos Bacterianos/metabolismo , DNA/metabolismo , DNA Bacteriano/metabolismo , DNA Super-Helicoidal/genética , DNA Super-Helicoidal/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Genoma Bacteriano , Transcrição Gênica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA