Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Bone ; 141: 115542, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32736145

RESUMO

Vascular calcification is associated with atherosclerosis, chronic kidney disease, and diabetes, and results from processes resembling endochondral or intramembranous ossification, or from processes that are distinct from ossification. Bone morphogenetic proteins (BMP), as well as other ligands, receptors, and regulators of the transforming growth factor beta (TGFß) family regulate vascular and valvular calcification by modulating the phenotypic plasticity of multipotent progenitor lineages associated with the vasculature or valves. While osteogenic ligands BMP2 and BMP4 appear to be both markers and drivers of vascular calcification, particularly in atherosclerosis, BMP7 may serve to protect against calcification in chronic kidney disease. BMP signaling regulators such as matrix Gla protein and BMP-binding endothelial regulator protein (BMPER) play protective roles in vascular calcification. The effects of BMP signaling molecules in vascular calcification are context-dependent, tissue-dependent, and cell-type specific. Here we review the current knowledge on mechanisms by which BMP signaling regulates vascular calcification and the potential therapeutic implications.


Assuntos
Proteínas Morfogenéticas Ósseas , Transdução de Sinais , Calcificação Vascular , Proteína Morfogenética Óssea 2 , Proteína Morfogenética Óssea 4 , Proteína Morfogenética Óssea 7 , Proteínas Morfogenéticas Ósseas/metabolismo , Proteínas de Transporte , Humanos
2.
Sci Transl Med ; 12(543)2020 05 13.
Artigo em Inglês | MEDLINE | ID: mdl-32404506

RESUMO

Human genetics, biomarker, and animal studies implicate loss of function in bone morphogenetic protein (BMP) signaling and maladaptive transforming growth factor-ß (TGFß) signaling as drivers of pulmonary arterial hypertension (PAH). Although sharing common receptors and effectors with BMP/TGFß, the function of activin and growth and differentiation factor (GDF) ligands in PAH are less well defined. Increased expression of GDF8, GDF11, and activin A was detected in lung lesions from humans with PAH and experimental rodent models of pulmonary hypertension (PH). ACTRIIA-Fc, a potent GDF8/11 and activin ligand trap, was used to test the roles of these ligands in animal and cellular models of PH. By blocking GDF8/11- and activin-mediated SMAD2/3 activation in vascular cells, ACTRIIA-Fc attenuated proliferation of pulmonary arterial smooth muscle cells and pulmonary microvascular endothelial cells. In several experimental models of PH, prophylactic administration of ACTRIIA-Fc markedly improved hemodynamics, right ventricular (RV) hypertrophy, RV function, and arteriolar remodeling. When administered after the establishment of hemodynamically severe PH in a vasculoproliferative model, ACTRIIA-Fc was more effective than vasodilator in attenuating PH and arteriolar remodeling. Potent antiremodeling effects of ACTRIIA-Fc were associated with inhibition of SMAD2/3 activation and downstream transcriptional activity, inhibition of proliferation, and enhancement of apoptosis in the vascular wall. ACTRIIA-Fc reveals an unexpectedly prominent role of GDF8, GDF11, and activin as drivers of pulmonary vascular disease and represents a therapeutic strategy for restoring the balance between SMAD1/5/9 and SMAD2/3 signaling in PAH.


Assuntos
Hipertensão Pulmonar , Ativinas , Animais , Diferenciação Celular , Células Endoteliais , Hipertensão Pulmonar/tratamento farmacológico , Transdução de Sinais
3.
Am J Respir Crit Care Med ; 199(7): 891-902, 2019 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-30312106

RESUMO

RATIONALE: BMP9 (bone morphogenetic protein 9) is a circulating endothelial quiescence factor with protective effects in pulmonary arterial hypertension (PAH). Loss-of-function mutations in BMP9, its receptors, and downstream effectors have been reported in heritable PAH. OBJECTIVES: To determine how an acquired deficiency of BMP9 signaling might contribute to PAH. METHODS: Plasma levels of BMP9 and antagonist soluble endoglin were measured in group 1 PAH, group 2 and 3 pulmonary hypertension (PH), and in patients with severe liver disease without PAH. MEASUREMENTS AND MAIN RESULTS: BMP9 levels were markedly lower in portopulmonary hypertension (PoPH) versus healthy control subjects, or other etiologies of PAH or PH; distinguished PoPH from patients with liver disease without PAH; and were an independent predictor of transplant-free survival. BMP9 levels were decreased in mice with PH associated with CCl4-induced portal hypertension and liver cirrhosis, but were normal in other rodent models of PH. Administration of ALK1-Fc, a BMP9 ligand trap consisting of the activin receptor-like kinase-1 extracellular domain, exacerbated PH and pulmonary vascular remodeling in mice treated with hypoxia versus hypoxia alone. CONCLUSIONS: BMP9 is a sensitive and specific biomarker of PoPH, predicting transplant-free survival and the presence of PAH in liver disease. In rodent models, acquired deficiency of BMP9 signaling can predispose to or exacerbate PH, providing a possible mechanistic link between PoPH and heritable PAH. These findings describe a novel experimental model of severe PH that provides insight into the synergy between pulmonary vascular injury and diminished BMP9 signaling in the pathogenesis of PAH.


Assuntos
Proteínas Morfogenéticas Ósseas/metabolismo , Hipertensão Portal/metabolismo , Hipertensão Portal/fisiopatologia , Hipertensão Pulmonar/metabolismo , Hipertensão Pulmonar/fisiopatologia , Hepatopatias/metabolismo , Hepatopatias/fisiopatologia , Adulto , Biomarcadores/sangue , Biomarcadores/metabolismo , Feminino , Humanos , Masculino , Pessoa de Meia-Idade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA