Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Bone Rep ; 17: 101629, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36325166

RESUMO

Compromises to collagen and mineral lead to a decrease in whole bone quantity and quality in a variety of systemic diseases, yet, clinically, disease manifestations differ between craniofacial and long bones. Collagen alterations can occur through post-translational modification via lysyl oxidase (LOX), which catalyzes enzymatic collagen cross-link formation, as well as through non-enzymatic advanced glycation end products (AGEs) such as pentosidine and carboxymethyl-lysine (CML). Characterization of the cross-links and AGEs, and comparison of the mineral and collagen modifications in craniofacial and long bones represent a critical gap in knowledge. However, alterations to either the mineral or collagen in bone may contribute to disease progression and, subsequently, the anatomical site dependence of a variety of diseases. Therefore, we hypothesized that collagen cross-links and AGEs differ between craniofacial and long bones and that altered collagen cross-linking reduces mineral quality in an anatomic location dependent. To study the effects of cross-link inhibition on mineralization between anatomical sites, beta-aminoproprionitrile (BAPN) was administered to rapidly growing, 5-8 week-old male mice. BAPN is a dose-dependent inhibitor of LOX that pharmacologically alters enzymatic cross-link formation. Long bones (femora) and craniofacial bones (mandibles) were compared for mineral quantity and quality, collagen cross-link and AGE profiles, and tissue level mechanics, as well as the response to altered cross-links via BAPN. A highly sensitive liquid chromatography/mass spectrometry (LC-MS) method was developed which allowed for quantification of site-dependent accumulation of the advanced glycation end-product, carboxymethyl-lysine (CML). CML was ∼8.3× higher in the mandible than the femur. The mandible had significantly higher collagen maturation, mineral crystallinity, and Young's modulus, but lower carbonation, than the femur. BAPN also had anatomic specific effects, leading to significant decreases in mature cross-links in the mandible, and an increase in mineral carbonation in the femur. This differential response of both the mineral and collagen composition to BAPN between the mandible and femur highlights the need to further understand how inherent compositional differences in collagen and mineral contribute to anatomic-site specific manifestations of disease in both craniofacial and long bones.

2.
Bone ; 125: 16-24, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31059864

RESUMO

BACKGROUND: Rodent studies of bone in chronic kidney disease have primarily relied on end-point examinations of bone microarchitecture. This study used longitudinal in vivo microcomputed tomography (in vivo µCT) to characterize the onset and progression of bone loss, specifically cortical porosity, in the Cy/+ rat of model of CKD. METHODS: Male CKD rats and normal littermates were studied. In vivo µCT scans of the right distal tibia repeated at 25, 30, and 35 weeks were analyzed for longitudinal changes in cortical and trabecular bone morphometry. In vitro µCT scans of the tibia and femur identified spatial patterns of bone loss across distal, midshaft and proximal sites. RESULTS: CKD animals had reduced BV/TV and cortical BV at all time points but developed cortical porosity and thinning between 30 and 35 weeks. Cortical pore formation was localized near the endosteal surface. The severity of bone loss was variable across bone sites, but the distal tibia was representative of both cortical and trabecular changes. CONCLUSIONS: The distal tibia was found to be a sensitive suitable site for longitudinal imaging of both cortical and trabecular bone changes in the CKD rat. CKD trabecular bone loss progressed through ~30 weeks followed by a sudden acceleration in cortical bone catabolism. These changes varied in timing and severity across individuals, and cortical bone loss and porosity progressed rapidly once initiated. The inclusion of longitudinal µCT in future studies will be important for both reducing the number of required animals and to track individual responses to treatment.


Assuntos
Doenças Ósseas Metabólicas/patologia , Insuficiência Renal Crônica/patologia , Animais , Densidade Óssea/fisiologia , Doenças Ósseas Metabólicas/diagnóstico por imagem , Osso Cortical/diagnóstico por imagem , Osso Cortical/patologia , Fêmur/diagnóstico por imagem , Fêmur/patologia , Masculino , Ratos , Insuficiência Renal Crônica/diagnóstico por imagem , Tíbia/diagnóstico por imagem , Tíbia/patologia , Microtomografia por Raio-X
3.
Curr Osteoporos Rep ; 15(3): 207-213, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-28447312

RESUMO

PURPOSE OF REVIEW: In this paper, we review the epidemiology, diagnosis, and pathogenesis of fractures and renal osteodystrophy. RECENT FINDINGS: The role of bone quality in the pathogenesis of fracture susceptibility in chronic kidney disease (CKD) is beginning to be elucidated. Bone quality refers to bone material properties, such as cortical and trabecular microarchitecture, mineralization, turnover, microdamage, and collagen content and structure. Recent data has added to our understanding of the effects of CKD on alterations to bone quality, emerging data on the role of abnormal collagen structure on bone strength, the potential of non-invasive methods to inform our knowledge of bone quality, and how we can use these methods to inform strategies that protect against bone loss and fractures. However, more prospective data is required. CKD is associated with abnormal bone quality and strength which results in high fracture incidence.


Assuntos
Distúrbio Mineral e Ósseo na Doença Renal Crônica/etiologia , Fraturas Ósseas/etiologia , Insuficiência Renal Crônica/complicações , Absorciometria de Fóton , Biópsia , Densidade Óssea , Osso e Ossos/diagnóstico por imagem , Osso e Ossos/patologia , Distúrbio Mineral e Ósseo na Doença Renal Crônica/diagnóstico , Distúrbio Mineral e Ósseo na Doença Renal Crônica/epidemiologia , Distúrbio Mineral e Ósseo na Doença Renal Crônica/metabolismo , Fraturas Ósseas/epidemiologia , Fraturas Ósseas/metabolismo , Humanos , Insuficiência Renal Crônica/metabolismo , Tomografia Computadorizada por Raios X
4.
Calcif Tissue Int ; 101(1): 75-81, 2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-28246928

RESUMO

Bisphosphonates represent the gold-standard pharmaceutical agent for reducing fracture risk. Long-term treatment with bisphosphonates can result in tissue brittleness which in rare clinical cases manifests as atypical femoral fracture. Although this has led to an increasing call for bisphosphonate cessation, few studies have investigated therapeutic options for follow-up treatment. The goal of this study was to test the hypothesis that treatment with raloxifene, a drug that has cell-independent effects on bone mechanical material properties, could reverse the compromised mechanical properties that occur following zoledronate treatment. Skeletally mature male C57Bl/6J mice were treated with vehicle (VEH), zoledronate (ZOL), or ZOL followed by raloxifene (RAL; 2 different doses). At the conclusion of 8 weeks of treatment, femora were collected and assessed with microCT and mechanical testing. Trabecular BV/TV was significantly higher in all treated animals compared to VEH with both RAL groups having significantly higher BV/TV compared to ZOL (+21%). All three drug-treated groups had significantly more cortical bone area, higher cortical thickness, and greater moment of inertia at the femoral mid-diaphysis compared to VEH with no difference among the three treated groups. All three drug-treated groups had significantly higher ultimate load compared to VEH-treated animals (+14 to 18%). Both doses of RAL resulted in significantly higher displacement values compared to ZOL-treated animals (+25 to +50%). In conclusion, the current work shows beneficial effects of raloxifene in animals previously treated with zoledronate. The higher mechanical properties of raloxifene-treated animals, combined with similar cortical bone geometry compared to animals treated with zoledronate, suggest that the raloxifene treatment is enhancing mechanical material properties of the tissue.


Assuntos
Conservadores da Densidade Óssea/farmacologia , Osso e Ossos/efeitos dos fármacos , Difosfonatos/farmacologia , Imidazóis/farmacologia , Cloridrato de Raloxifeno/farmacologia , Animais , Fenômenos Biomecânicos/efeitos dos fármacos , Densidade Óssea/efeitos dos fármacos , Remodelação Óssea/efeitos dos fármacos , Fêmur/efeitos dos fármacos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Ácido Zoledrônico
5.
Bone Rep ; 5: 192-198, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27588301

RESUMO

The OsteoProbe is a second-generation reference point indentation (RPI) device without a reference probe that is designed to simplify RPI testing for clinical use. Successful clinical implementation of the OsteoProbe would benefit from a better understanding of how its output, bone material strength index (BMSi), relates to the material properties of bone and under what conditions it reliably correlates with fracture risk. Large animal models have the potential to help fill this knowledge gap, as cadaveric studies are retrospective and limited by incomplete patient histories (including the potential use of bone matrix altering drugs such as bisphosphonates). The goal of this study was to assess the intra and inter-animal variability of OsteoProbe measures in untreated beagle dogs (n=12), and to evaluate this variability in comparison to traditional mechanical testing. OsteoProbe measurements were performed in vivo on the left tibia of each dog and repeated 6 months later on the day of sacrifice. Within-animal variation of BMSi (CV of 5-10 indents) averaged 8.9 and 9.0% at the first and second timepoints, respectively. In contrast, inter-animal variation of BMSi increased from 5.3% to 9.1%. The group variation of BMSi was on par with that of traditional 3-point mechanical testing; inter-animal variation was 10% for ultimate force, 13% for stiffness, and 12% for total work as measured on the femur. There was no significant change in mean BMSi after 6 months, but the individual change with time across the 12 dogs was highly variable, ranging from -12.4% to +21.7% (Mean 1.6%, SD 10.6%). No significant correlations were found between in vivo tibia BMSi and femur mechanical properties measured by ex vivo 3-pt bending, but this may be a limitation of sample size or the tests being performed on different bones. No relationship was found between BMSi and tissue mineral density, but a strong positive correlation was found between BMSi and tibia cortical thickness (ρ=0.706, p=0.010). This report shows that while the OsteoProbe device has inter-individual variability quite similar to that of traditional mechanical testing, the longitudinal changes show high levels of heterogeneity across subjects. We further highlight the need for standardization in post-testing data processing and further study of the relationships between OsteoProbe and traditional mechanical testing.

7.
Bone ; 81: 327-337, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26211995

RESUMO

The collagen cross-link profile of bone, associated with bone strength and fracture toughness, is tightly regulated (affecting cross-link quantity, type, lysine hydroxylation and maturity) and may contribute to the improvements in bone quality during exercise. We hypothesized that 1) exercise promotes mature cross-link formation, 2) increased mature cross-linking is accompanied by shifts in lysine hydroxylation, and 3) these changes in collagen cross-link profile have positive effects on mechanical properties. Growing male C57Bl6 mice were treated with 30 min/day of running exercise, 350 mg/kg/day ß-aminopropionitrile (BAPN) injected subcutaneously to inhibit enzymatic collagen cross-linking, or both exercise and BAPN, from 5 to 8 weeks of age. Bone collagen cross-linking profile, mechanical properties, morphology, and mineralization were measured from the tibiae. Cross-link measures, including immature, pyridinoline, pyrrole and pentosidine cross-links, ratios reflecting cross-link maturity and hydroxylation, and mineralization were tested for their importance to mechanical properties across 8 week groups through correlation analyses and step-wise linear regressions. BAPN treatment significantly reduced lysylpyridinoline, pyrrole, hydroxylysinorleucine, and total mature collagen cross-linking, resulting in decreased bone elastic modulus and increased yield strain despite a marginal increase in TMD. Exercise caused a shift toward pyridinoline cross-linking, with increased hydroxylysylpyridinoline and decreased pyrrole cross-linking resulting in total mature cross-linking and estimated tissue level mechanical properties matching sedentary control levels. Exercise superimposed on BAPN treatment increased total mature cross-linking from BAPN to control levels, but did so by increasing pyridinoline, not pyrrole, cross-links. Exercise also counteracted the BAPN effects on modulus and strain, without a change in TMD. Pyrrole cross-linking was the strongest correlate of modulus (r=0.470, p<0.01) and yield strain (r=-0.467, p<0.01). Cross-links with similar levels of telopeptide lysine hydroxylation to pyrrole (lysylpyridinoline and hydroxylysinorleucine) also correlated with modulus and strain to a lesser extent. In conclusion, exercise in growing mice promotes pyridinoline collagen cross-linking in bone, the resulting increase in total mature cross-linking is sufficient to counteract the mechanical effects of concurrent cross-link inhibition, and this responsiveness to loading is a potential means by which exercise might improve bone quality in diseased or otherwise compromised bone.


Assuntos
Aminoácidos/metabolismo , Reagentes de Ligações Cruzadas/metabolismo , Osteogênese/fisiologia , Condicionamento Físico Animal/fisiologia , Aminoácidos/farmacologia , Animais , Fenômenos Biomecânicos/efeitos dos fármacos , Fenômenos Biomecânicos/fisiologia , Reagentes de Ligações Cruzadas/farmacologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Osteogênese/efeitos dos fármacos , Condicionamento Físico Animal/métodos , Comportamento Sedentário
8.
J Biol Chem ; 290(22): 14004-18, 2015 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-25864198

RESUMO

WISP1/CCN4 (hereafter referred to as WISP1), a member of the CCN family, is found in mineralized tissues and is produced by osteoblasts and their precursors. In this study, Wisp1-deficient (Wisp1(-/-)) mice were generated. Using dual-energy x-ray absorptiometry, we showed that by 3 months, the total bone mineral density of Wisp1(-/-) mice was significantly lower than that of WT mice. Further investigation by micro-computed tomography showed that female Wisp1(-/-) mice had decreased trabecular bone volume/total volume and that both male and female Wisp1(-/-) mice had decreased cortical bone thickness accompanied by diminished biomechanical strength. The molecular basis for decreased bone mass in Wisp1(-/-) mice arises from reduced bone formation likely caused by osteogenic progenitors that differentiate poorly compared with WT cells. Osteoclast precursors from Wisp1(-/-) mice developed more tartrate-resistant acid phosphatase-positive cells in vitro and in transplants, suggesting that WISP1 is also a negative regulator of osteoclast differentiation. When bone turnover (formation and resorption) was induced by ovariectomy, Wisp1(-/-) mice had lower bone mineral density compared WT mice, confirming the potential for multiple roles for WISP1 in controlling bone homeostasis. Wisp1(-/-) bone marrow stromal cells had reduced expression of ß-catenin and its target genes, potentially caused by WISP1 inhibition of SOST binding to LRP6. Taken together, our data suggest that the decreased bone mass found in Wisp1(-/-) mice could potentially be caused by an insufficiency in the osteodifferentiation capacity of bone marrow stromal cells arising from diminished Wnt signaling, ultimately leading to altered bone turnover and weaker biomechanically compromised bones.


Assuntos
Remodelação Óssea , Osso e Ossos/metabolismo , Proteínas de Sinalização Intercelular CCN/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Via de Sinalização Wnt , Alelos , Animais , Células da Medula Óssea/citologia , Diferenciação Celular , Células Cultivadas , Matriz Extracelular/metabolismo , Feminino , Proteína-1 Relacionada a Receptor de Lipoproteína de Baixa Densidade , Masculino , Camundongos , Camundongos Knockout , Osteoblastos/metabolismo , Osteoclastos/metabolismo , RNA Mensageiro/metabolismo , Receptores de LDL/metabolismo , Recombinação Genética , Células Estromais/citologia , Proteínas Supressoras de Tumor/metabolismo , Microtomografia por Raio-X
9.
J Bone Miner Res ; 30(3): 455-64, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25213475

RESUMO

Collagen cross-linking is altered in many diseases of bone, and enzymatic collagen cross-links are important to bone quality, as evidenced by losses of strength after lysyl oxidase inhibition (lathyrism). We hypothesized that cross-links also contribute directly to bone fracture toughness. A mouse model of lathyrism using subcutaneous injection of up to 500 mg/kg ß-aminopropionitrile (BAPN) was developed and characterized (60 animals across 4 dosage groups). Three weeks of 150 or 350 mg/kg BAPN treatment in young, growing mice significantly reduced cortical bone fracture toughness, strength, and pyridinoline cross-link content. Ratios reflecting relative cross-link maturity were positive regressors of fracture toughness (HP/[DHLNL + HLNL] r(2) = 0.208, p < 0.05; [HP + LP]/[DHNL + HLNL] r(2) = 0.196, p < 0.1), whereas quantities of mature pyridinoline cross-links were significant positive regressors of tissue strength (lysyl pyridinoline r(2) = 0.159, p = 0.014; hydroxylysyl pyridinoline r(2) = 0.112, p < 0.05). Immature and pyrrole cross-links, which were not significantly reduced by BAPN, did not correlate with mechanical properties. The effect of BAPN treatment on mechanical properties was dose specific, with the greatest impact found at the intermediate (350 mg/kg) dose. Calcein labeling was used to define locations of new bone formation, allowing for the identification of regions of normally cross-linked (preexisting) and BAPN-treated (newly formed, cross-link-deficient) bone. Raman spectroscopy revealed spatial differences attributable to relative tissue age and effects of cross-link inhibition. Newly deposited tissues had lower mineral/matrix, carbonate/phosphate, and Amide I cross-link (matrix maturity) ratios compared with preexisting tissues. BAPN treatment did not affect mineral measures but significantly increased the cross-link (matrix maturity) ratio compared with newly formed control tissue. Our study reveals that spatially localized effects of short-term BAPN cross-link inhibition can alter the whole-bone collagen cross-link profile to a measureable degree, and this cross-link profile correlates with bone fracture toughness and strength. Thus, cross-link profile perturbations associated with bone disease may provide insight into bone mechanical quality and fracture risk.


Assuntos
Colágeno/metabolismo , Fraturas Ósseas/fisiopatologia , Latirismo/fisiopatologia , Células 3T3 , Aminopropionitrilo/administração & dosagem , Animais , Fenômenos Biomecânicos , Modelos Animais de Doenças , Fraturas Ósseas/metabolismo , Latirismo/metabolismo , Camundongos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA