RESUMO
We report a novel synthetic procedure for the high-yield synthesis of metal-organic frameworks (MOFs) with fcu topology with a UiO-66-like structure starting from a range of commercial ZrIV precursors and various substituted dicarboxylic linkers. The syntheses are carried out by grinding in a ball mill the starting reagents, namely, Zr salts and the dicarboxylic linkers, in the presence of a small amount of acetic acid and water (1 mL total volume for 1 mmol of each reagent), followed by incubation at either room temperature or 120 °C. Such a simple "shake 'n bake" procedure, inspired by the solid-state reaction of inorganic materials, such as oxides, avoids the use of large amounts of solvents generally used for the syntheses of Zr-MOF. Acidity of the linkers and the amount of water are found to be crucial factors in affording materials of quality comparable to that of products obtained under solvo- or hydrothermal conditions.
RESUMO
NMR spectroscopy of paramagnetic materials (pNMR) has the potential to provide great structural insight, but many challenges remain in interpreting the spectra in detail. This work presents a study of a series of structurally analogous metal-organic frameworks (MOFs) based on 5-substituted isophthalate linkers and Cu(II) paddlewheel dimers, of interest owing to their "crumple zone" structural rearrangement on dehydration/rehydration. 13C MAS NMR spectra reveal a wide variation in the observed resonance position for chemically similar C species in the different MOFs but, despite this, resonances are overlapped in several cases. However, by considering a combination of the integration of quantitative spectra, the resonance position as a function of temperature and T1 relaxation measurements, the spectra can be fully assigned. It is also demonstrated that the prototypical MOF in this series, STAM-1, displays a crumple zone rearrangement on dehydration, similar to the well-characterised 5-ethoxyisophthalate MOF (STAM-17-OEt) although, while the materials have similar local C environments, dehydrated STAM-1 exhibits less long-range order.
RESUMO
Highly porous metal-organic frameworks (MOFs), which have undergone exciting developments over the past few decades, show promise for a wide range of applications. However, many studies indicate that they suffer from significant stability issues, especially with respect to their interactions with water, which severely limits their practical potential. Here we demonstrate how the presence of 'sacrificial' bonds in the coordination environment of its metal centres (referred to as hemilability) endows a dehydrated copper-based MOF with good hydrolytic stability. On exposure to water, in contrast to the indiscriminate breaking of coordination bonds that typically results in structure degradation, it is non-structural weak interactions between the MOF's copper paddlewheel clusters that are broken and the framework recovers its as-synthesized, hydrated structure. This MOF retained its structural integrity even after contact with water for one year, whereas HKUST-1, a compositionally similar material that lacks these sacrificial bonds, loses its crystallinity in less than a day under the same conditions.
RESUMO
Solvothermal reaction of Zn(OAc)2 and 5-methoxy isophthalic acid (H2MeOip) in aqueous alcohols ROH (R = H, Me, Et, or (i)Pr) affords four different novel coordination polymers. Zn2(HMeOip)(MeOip)(OAc) (1) forms as a 1D 'ribbon of rings' polymer. Zn6(MeOip)4.5(HMeOip)(OH)2(H2O)2·5.5H2O (2) crystallises as a complex 3D framework. Zn(MeOip)(H2O)2 H2O (3) is a 1D coordination polymer that contains almost planar strips of Zn(MeOip). compound 4, Zn5(MeOip)4(OH)2(H2O)4·H2O, obtained from aqueous (i)PrOH, crystallises as a 2D polymer containing two crystallographically distinct Zn5(OH)2 clusters. Preliminary nitric oxide release experiments have been conducted.
RESUMO
An ionic liquid assisted strategy for the synthesis of zeolitic material is reported. This strategy is a solid state synthetic method and the ionic liquid is employed as structure directing agent. A TON-type zeolite, which contains one-dimensional 10-member-ring, is successfully synthesized with the assistance of the ionic liquid, 1-ethyl-3-methylimidazolium bromide. This finding improves our understanding about the challenge of ionothermally synthesizing siliceous and aluminosilicate zeolites.