Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
iScience ; 20: 466-480, 2019 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-31627132

RESUMO

The cellular stress response triggers a cascade of events leading to transcriptional reprogramming and a transient inhibition of global protein synthesis, which is thought to be mediated by phosphorylation of eukaryotic initiation factor-2α (eIF2α). Using mouse embryonic fibroblasts (MEFs) and the fission yeast S. pombe, we report that rapid translational arrest and cell survival in response to hydrogen peroxide-induced oxidative stress do not rely on eIF2α kinases and eIF2α phosphorylation. Rather, H2O2 induces a block in elongation through phosphorylation of eukaryotic elongation factor 2 (eEF2). Kinetic and dose-response analyses uncovered cross talk between the eIF2α and eEF2 phosphorylation pathways, indicating that, in MEFs, eEF2 phosphorylation initiates the acute shutdown in translation, which is maintained by eIF2α phosphorylation. Our results challenge the common conception that eIF2α phosphorylation is the primary trigger of translational arrest in response to oxidative stress and point to integrated control that may facilitate the survival of cancer cells.

2.
Cell Rep ; 14(9): 2059-2067, 2016 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-26923601

RESUMO

Deficiency of S6 kinase (S6K) extends the lifespan of multiple species, but the underlying mechanisms are unclear. To discover potential effectors of S6K-mediated longevity, we performed a proteomics analysis of long-lived rsks-1/S6K C. elegans mutants compared to wild-type animals. We identified the arginine kinase ARGK-1 as the most significantly enriched protein in rsks-1/S6K mutants. ARGK-1 is an ortholog of mammalian creatine kinase, which maintains cellular ATP levels. We found that argk-1 is possibly a selective effector of rsks-1/S6K-mediated longevity and that overexpression of ARGK-1 extends C. elegans lifespan, in part by activating the energy sensor AAK-2/AMPK. argk-1 is also required for the reduced body size and increased stress resistance observed in rsks-1/S6K mutants. Finally, creatine kinase levels are increased in the brains of S6K1 knockout mice. Our study identifies ARGK-1 as a longevity effector in C. elegans with reduced RSKS-1/S6K levels.


Assuntos
Arginina Quinase/fisiologia , Proteínas de Caenorhabditis elegans/fisiologia , Caenorhabditis elegans/fisiologia , Creatina Quinase/fisiologia , Longevidade , Proteínas Quinases S6 Ribossômicas 70-kDa/fisiologia , Proteínas Quinases Ativadas por AMP/metabolismo , Animais , Proteínas de Caenorhabditis elegans/metabolismo , Ativação Enzimática , Feminino , Masculino , Camundongos Knockout , Neuroglia/enzimologia , Proteínas Serina-Treonina Quinases/metabolismo
3.
Nat Commun ; 4: 2267, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23925298

RESUMO

Autophagy is a cellular recycling process that has an important anti-aging role, but the underlying molecular mechanism is not well understood. The mammalian transcription factor EB (TFEB) was recently shown to regulate multiple genes in the autophagy process. Here we show that the predicted TFEB orthologue HLH-30 regulates autophagy in Caenorhabditis elegans and, in addition, has a key role in lifespan determination. We demonstrate that hlh-30 is essential for the extended lifespan of Caenorhabditis elegans in six mechanistically distinct longevity models, and overexpression of HLH-30 extends lifespan. Nuclear localization of HLH-30 is increased in all six Caenorhabditis elegans models and, notably, nuclear TFEB levels are augmented in the livers of mice subjected to dietary restriction, a known longevity-extending regimen. Collectively, our results demonstrate a conserved role for HLH-30 and TFEB in autophagy, and possibly longevity, and identify HLH-30 as a uniquely important transcription factor for lifespan modulation in Caenorhabditis elegans.


Assuntos
Autofagia , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/citologia , Caenorhabditis elegans/fisiologia , Longevidade , Animais , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/metabolismo , Núcleo Celular/metabolismo , Dieta , Feminino , Lisossomos/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Modelos Animais , Mutação/genética , Homologia de Sequência de Aminoácidos
4.
J Gerontol A Biol Sci Med Sci ; 68(4): 359-67, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22904097

RESUMO

Bivalve species with exceptional longevity are newly introduced model systems in biogerontology to test evolutionarily conserved mechanisms of aging. Here, we tested predictions based on the oxidative stress hypothesis of aging using one of the tropical long-lived sessile giant clam species, the smooth giant clam (Tridacna derasa; predicted maximum life span: >100 years) and the short-lived Atlantic bay scallop (Argopecten irradians irradians; maximum life span: 2 years). The warm water-dwelling giant clams warrant attention because they challenge the commonly held view that the exceptional longevity of bivalves is a consequence of the cold water they reside in. No significant interspecific differences in production of H2O2 and O2- in the gills, heart, or adductor muscle were observed. Protein carbonyl content in gill and muscle tissues were similar in T derasa and A i irradians. In tissues of T derasa, neither basal antioxidant capacities nor superoxide dismutase and catalase activities were consistently greater than in A i irradians. We observed a positive association between longevity and resistance to mortality induced by exposure to tert-butyl hydroperoxide (TBHP). This finding is consistent with the prediction based on the oxidative stress hypothesis of aging. The findings that in tissues of T derasa, proteasome activities are significantly increased as compared with those in tissues of A i irradians warrant further studies to test the role of enhanced protein recycling activities in longevity of bivalves.


Assuntos
Envelhecimento/fisiologia , Longevidade/fisiologia , Estresse Oxidativo/fisiologia , Carbonilação Proteica , terc-Butil Hidroperóxido/farmacologia , Animais , Antioxidantes/metabolismo , Evolução Biológica , Bivalves , Catalase/metabolismo , Sequestradores de Radicais Livres/metabolismo , Peróxido de Hidrogênio/metabolismo , Expectativa de Vida , Modelos Biológicos , Água do Mar , Especificidade da Espécie , Superóxido Dismutase/metabolismo , Temperatura , Sobrevivência de Tecidos/fisiologia
5.
J Gerontol A Biol Sci Med Sci ; 66(7): 741-50, 2011 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-21486920

RESUMO

We assess whether reactive oxygen species production and resistance to oxidative stress might be causally involved in the exceptional longevity exhibited by the ocean quahog Arctica islandica. We tested this hypothesis by comparing reactive oxygen species production, resistance to oxidative stress, antioxidant defenses, and protein damage elimination processes in long-lived A islandica with the shorter-lived hard clam, Mercenaria mercenaria. We compared baseline biochemical profiles, age-related changes, and responses to exposure to the oxidative stressor tert-butyl hydroperoxide (TBHP). Our data support the premise that extreme longevity in A islandica is associated with an attenuated cellular reactive oxygen species production. The observation of reduced protein carbonyl concentration in A islandica gill tissue compared with M mercenaria suggests that reduced reactive oxygen species production in long-living bivalves is associated with lower levels of accumulated macromolecular damage, suggesting cellular redox homeostasis may determine life span. Resistance to aging at the organismal level is often reflected in resistance to oxidative stressors at the cellular level. Following TBHP exposure, we observed not only an association between longevity and resistance to oxidative stress-induced mortality but also marked resistance to oxidative stress-induced cell death in the longer-living bivalves. Contrary to some expectations from the oxidative stress hypothesis, we observed that A islandica exhibited neither greater antioxidant capacities nor specific activities than in M mercenaria nor a more pronounced homeostatic antioxidant response following TBHP exposure. The study also failed to provide support for the exceptional longevity of A islandica being associated with enhanced protein recycling. Our findings demonstrate an association between longevity and resistance to oxidative stress-induced cell death in A islandica, consistent with the oxidative stress hypothesis of aging and provide justification for detailed evaluation of pathways involving repair of free radical-mediated macromolecular damage and regulation of apoptosis in the world's longest-living non-colonial animal.


Assuntos
Envelhecimento/metabolismo , Apoptose , Longevidade/fisiologia , Mercenaria/fisiologia , Estresse Oxidativo/fisiologia , terc-Butil Hidroperóxido/farmacologia , Animais , Antioxidantes/metabolismo , Peróxido de Hidrogênio/metabolismo , Longevidade/efeitos dos fármacos , Mercenaria/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo
6.
Mol Cell ; 35(5): 586-97, 2009 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-19748355

RESUMO

The COP9 signalosome (CSN) is thought to maintain the stability of cullin-RING ubiquitin ligases (CRL) by limiting the autocatalytic destruction of substrate adapters such as F box proteins (FBPs). CAND1, a protein associated with unneddylated CUL1, was proposed to assist in this role in an as yet unclear fashion. We found that only a subset of Schizosaccharomyces pombe FBPs, which feature a critical F box proline that promotes their interaction with CUL1, required CSN for stability. Unlike the CRL3 adaptor Btb3p, none of the CSN-sensitive FBPs were affected by deletion of ubp12. Contrary to current models, CAND1 does not control adaptor stability but maintains the cellular balance of CRL1 complexes by preventing rare FBPs from being outcompeted for binding to CUL1 by more ample adapters. These findings were integrated into a refined model of CRL control in which substrate availability toggles CRLs between independent CSN and CAND1 cycles.


Assuntos
Proteínas Culina/metabolismo , Proteínas F-Box/metabolismo , Complexos Multiproteicos/metabolismo , Peptídeo Hidrolases/metabolismo , Proteínas de Schizosaccharomyces pombe/metabolismo , Schizosaccharomyces/enzimologia , Sequência de Aminoácidos , Proteína Quinase CDC2/metabolismo , Complexo do Signalossomo COP9 , Sequência Conservada , Proteínas Culina/química , Proteínas Culina/genética , Endopeptidases/metabolismo , Proteínas F-Box/química , Proteínas F-Box/genética , Metaloproteases/metabolismo , Modelos Moleculares , Dados de Sequência Molecular , Complexos Multiproteicos/genética , Mutação , Peptídeo Hidrolases/genética , Prolina , Ligação Proteica , Estabilidade Proteica , Proteínas Ligases SKP Culina F-Box/metabolismo , Schizosaccharomyces/genética , Proteínas de Schizosaccharomyces pombe/química , Proteínas de Schizosaccharomyces pombe/genética , Fatores de Tempo , Ubiquitinas/metabolismo
7.
Proc Natl Acad Sci U S A ; 100(10): 5974-9, 2003 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-12714683

RESUMO

Although distinct pathological stages of breast cancer have been described, the molecular differences among these stages are largely unknown. Here, through the combined use of laser capture microdissection and DNA microarrays, we have generated in situ gene expression profiles of the premalignant, preinvasive, and invasive stages of human breast cancer. Our data reveal extensive similarities at the transcriptome level among the distinct stages of progression and suggest that gene expression alterations conferring the potential for invasive growth are already present in the preinvasive stages. In contrast to tumor stage, different tumor grades are associated with distinct gene expression signatures. Furthermore, a subset of genes associated with high tumor grade is quantitatively correlated with the transition from preinvasive to invasive growth.


Assuntos
Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Perfilação da Expressão Gênica , Progressão da Doença , Enzimas/genética , Células Epiteliais/patologia , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Processamento de Imagem Assistida por Computador , Hibridização In Situ , Proteínas de Neoplasias/genética , Estadiamento de Neoplasias , Reação em Cadeia da Polimerase
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA