Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Sci Adv ; 10(38): eado9697, 2024 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-39303035

RESUMO

Refractory multiprincipal element alloys (RMPEAs) are potential successors to incumbent high-temperature structural alloys, although efforts to improve oxidation resistance with large additions of passivating elements have led to embrittlement. RMPEAs containing group IV and V elements have a balance of properties including moderate ductility, low density, and the necessary formability. We find that oxidation of group IV-V RMPEAs induces hierarchical heterogeneities, ranging from nanoscale interstitial complexes to tertiary phases. This microstructural hierarchy considerably enhances hardness without indentation cracking, with values ranging between 12.1 and 22.6 GPa from the oxide-adjacent metal to the surface oxides, a 3.7 to 6.8× increase over the interstitial-free alloy. Our fundamental understanding of the oxygen influence on phase formation informs future alloy design to enhance oxidation resistance and obtain exceptional hardness while preserving plasticity.

2.
J Am Chem Soc ; 146(36): 25190-25199, 2024 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-39196995

RESUMO

The design of novel quaternary materials can be a chemically challenging endeavor. Here, we show that a new tolerance factor, we herein call the quaternary tolerance factor (QTF), akin to the Goldschmidt ratio, can be applied to a homologous series of quaternary materials to aid in the prediction of structural stability in new phases. Single crystals of nine new members of the A2Ln4Cu2nQ7+n homologous series were synthesized (A = K, Rb, Cs, Ln = Sm, Gd, Tb, Dy, Er, Yb, Lu, Q = S, Se) for n = 1, 2, and 3 using a reactive KCl flux method as the sole potassium source. This homologous series is notable for being the largest of all known chalcogenide homologies and thus serves as a case study for understanding quaternary structural relationships. We present a thorough structural analysis of these newly synthesized compounds and place them in the context of all previously reported members of the homologous series. We then report a generalizable tolerance factor capable of predicting structurally interrelated quaternary materials from an a priori sphere-packing approach for the design of new materials.

3.
Inorg Chem ; 63(21): 9726-9734, 2024 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-38743495

RESUMO

A new misfit layered compound with the stoichiometry (EuS)1+δ(NbSe2)2 (δ ≈ 0.13) has been successfully synthesized. High-resolution transmission electron microscopy and powder X-ray diffraction confirm the misfit structure with (EuS)-(EuS) spacing of 18.30(1) Å. Magnetization, electrical resistivity, heat capacity, and thermal transport measurements show that the material is a heavily doped semiconductor or poor metal with a low thermal conductivity of ∼1 W/m K and an antiferromagnetic ordering transition at TN = 4.7 K. In contrast to the parent materials, the misfit is neither ferromagnetic nor superconducting down to T = 0.4 K. We find evidence of a field-driven transition to a ferromagnetic state due to reorientation of ferromagnetic EuS layers at µoH = 0.5 T at T = 2 K.

4.
Chem Mater ; 36(4): 1870-1879, 2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38435048

RESUMO

We report superconductivity in the full Heusler compound LiPd2Si (space group Fm3̅m, No. 225) at a critical temperature of Tc = 1.3 K and a normalized heat capacity jump at Tc, ΔC/γTc = 1.1. The low-temperature isothermal magnetization curves imply type-I superconductivity, as previously observed in LiPd2Ge. We show, based on density functional theory calculations and using the molecular orbital theory approach, that while LiPd2Si and LiPd2Ge share the Pd cubic cage motif that is found in most of the reported Heusler superconductors, they show distinctive features in the electronic structure. This is due to the fact that Li occupies the site which, in other compounds, is filled with an early transition metal or a rare-earth metal. Thus, while a simple valence electron count-property relationship is useful in predicting and tuning Heusler materials, inclusion of the symmetry of interacting frontier orbitals is also necessary for the best understanding.

5.
Nat Commun ; 15(1): 1607, 2024 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-38383666

RESUMO

The quantum limit in a Fermi liquid, realized when a single Landau level is occupied in strong magnetic fields, gives rise to unconventional states, including the fractional quantum Hall effect and excitonic insulators. Stronger interactions in metals with nearly localized f-electron degrees of freedom increase the likelihood of these unconventional states. However, access to the quantum limit is typically impeded by the tendency of f-electrons to polarize in a strong magnetic field, consequently weakening the interactions. In this study, we propose that the quantum limit in such systems must be approached in reverse, starting from an insulating state at zero magnetic field. In this scenario, Landau levels fill in the reverse order compared to regular metals and are closely linked to a field-induced insulator-to-metal transition. We identify YbB12 as a prime candidate for observing this effect and propose the presence of an excitonic insulator state near this transition.

6.
Sci Adv ; 9(28): eadg7269, 2023 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-37436976

RESUMO

Materials with Kagome nets are of particular importance for their potential combination of strong correlation, exotic magnetism, and electronic topology. KV3Sb5 was discovered to be a layered topological metal with a Kagome net of vanadium. Here, we fabricated Josephson Junctions of K1-xV3Sb5 and induced superconductivity over long junction lengths. Through magnetoresistance and current versus phase measurements, we observed a magnetic field sweeping direction-dependent magnetoresistance and an anisotropic interference pattern with a Fraunhofer pattern for in-plane magnetic field but a suppression of critical current for out-of-plane magnetic field. These results indicate an anisotropic internal magnetic field in K1-xV3Sb5 that influences the superconducting coupling in the junction, possibly giving rise to spin-triplet superconductivity. In addition, the observation of long-lived fast oscillations shows evidence of spatially localized conducting channels arising from edge states. These observations pave the way for studying unconventional superconductivity and Josephson device based on Kagome metals with electron correlation and topology.

7.
Nano Lett ; 23(12): 5634-5640, 2023 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-37318449

RESUMO

Time-reversal invariance (TRS) and inversion symmetry (IS) are responsible for the topological band structure in Dirac semimetals (DSMs). These symmetries can be broken by applying an external magnetic or electric field, resulting in fundamental changes to the ground state Hamiltonian and a topological phase transition. We probe these changes using universal conductance fluctuations (UCF) in the prototypical DSM, Cd3As2. With increasing magnetic field, the magnitude of the UCF decreases by a factor of 2, in agreement with numerical calculations of the effect of broken TRS. In contrast, the magnitude of the UCF increases monotonically when the chemical potential is gated away from the charge neutrality point. We attribute this to Fermi surface anisotropy rather than broken IS. The concurrence between experimental data and theory provides unequivocal evidence that UCF are the dominant source of fluctuations and offers a general methodology for probing broken-symmetry effects in topological quantum materials.

8.
J Am Chem Soc ; 145(8): 4527-4533, 2023 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-36789888

RESUMO

Electrons in solids often adopt complex patterns of chemical bonding driven by the competition between energy gains from covalency and delocalization, and energy costs of double occupation to satisfy Pauli exclusion, with multiple intermediate states in the transition between highly localized, and magnetic, and delocalized, and nonmagnetic limits. Herein, we report a chemical pressure-driven transition from a proper Mn magnetic ordering phase transition to a Mn magnetic phase crossover in EuMn2P2 the limiting end member of the EuMn2X2 (X = Sb, As, P) family of layered materials. This loss of a magnetic ordering occurs despite EuMn2P2 remaining an insulator at all temperatures, and with a phase transition to long-range Eu antiferromagnetic order at TN ≈ 17 K. The absence of a Mn magnetic phase transition contrasts with the formation of long-range Mn order at T ≈ 130 K in isoelectronic EuMn2Sb2 and EuMn2As2. Temperature-dependent specific heat and 31P NMR measurements provide evidence for the development of short-range Mn magnetic correlations from T ≈ 250-100 K, interpreted as a precursor to covalent bond formation. Density functional theory calculations demonstrate an unusual sensitivity of the band structure to the details of the imposed Mn and Eu magnetic order, with an antiferromagnetic Mn arrangement required to recapitulate an insulating state. Our results imply a picture in which long-range Mn magnetic order is suppressed by chemical pressure, but that antiferromagnetic correlations persist, narrowing bands and producing an insulating state.

9.
Inorg Chem ; 61(29): 11118-11123, 2022 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-35802135

RESUMO

Transition-metal oxynitrides have a variety of functions such as visible light-responsive catalysts and dielectric materials, but acquiring single crystals necessary to understand inherent properties is difficult and is limited to relatively small sizes (<10 µm) because they easily decompose at high temperatures. Here, we have succeeded in growing platelet single crystals of TaON with a typical size of 50 × 100 × 10 µm3 under a high pressure and high temperature (6 GPa and 1400 °C) using a LiCl flux. Such a harsh condition, in contrast to powder samples synthesized under mild conditions, resulted in the introduction of a large amount of oxygen vacancies (x = 0.06 in TaO1-xN) into the crystal, providing a metallic behavior with a large anisotropy of ρc/ρab ∼ 103. Low-temperature oxygen annealing allows for a single-crystal-to-single-crystal transformation to obtain fully oxidized TaON (yellow) crystals. Needle-like crystals can be obtained when NH4Cl is used as a flux. Furthermore, black Hf2ON2 single crystals are also grown, suggesting that the high-pressure flux method is widely applicable to other transition-metal oxynitrides, with extensive carrier control.

10.
Nature ; 604(7907): 653-656, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35478238

RESUMO

The superconducting analogue to the semiconducting diode, the Josephson diode, has long been sought with multiple avenues to realization being proposed by theorists1-3. Showing magnetic-field-free, single-directional superconductivity with Josephson coupling, it would serve as the building block for next-generation superconducting circuit technology. Here we realized the Josephson diode by fabricating an inversion symmetry breaking van der Waals heterostructure of NbSe2/Nb3Br8/NbSe2. We demonstrate that even without a magnetic field, the junction can be superconducting with a positive current while being resistive with a negative current. The ΔIc behaviour (the difference between positive and negative critical currents) with magnetic field is symmetric and Josephson coupling is proved through the Fraunhofer pattern. Also, stable half-wave rectification of a square-wave excitation was achieved with a very low switching current density, high rectification ratio and high robustness. This non-reciprocal behaviour strongly violates the known Josephson relations and opens the door to discover new mechanisms and physical phenomena through integration of quantum materials with Josephson junctions, and provides new avenues for superconducting quantum devices.

11.
Inorg Chem ; 61(17): 6480-6487, 2022 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-35446568

RESUMO

Metal-organic frameworks (MOFs) provide exceptional chemical tunability and have recently been demonstrated to exhibit electrical conductivity and related functional electronic properties. The kagomé lattice is a fruitful source of novel physical states of matter, including the quantum spin liquid (in insulators) and Dirac fermions (in metals). Small-bandgap kagomé materials have the potential to bridge quantum spin liquid states and exhibit phenomena such as superconductivity but remain exceptionally rare. Here we report a structural, thermodynamic, and transport study of the two-dimensional kagomé metal-organic frameworks Ni3(HIB)2 and Cu3(HIB)2 (HIB = hexaiminobenzene). Magnetization measurements yield Curie constants of 0.989 emu K (mol Ni)-1 Oe-1 and 0.371 emu K (mol Cu)-1 Oe-1, respectively, close to the values expected for ideal S = 1 Ni2+ and S = 1/2 Cu2+. Weiss temperatures of -10.6 and -14.3 K indicate net weak mean field antiferromagnetic interactions between ions. Electrical transport measurements reveal that both materials are semiconducting, with gaps (Eg) of 22.2 and 103 meV, respectively. Specific heat measurements reveal a large T-linear contribution γ of 148(4) mJ mol-fu-1 K-2 in Ni3(HIB)2 with only a gradual upturn below ∼5 K and no evidence of a phase transition to an ordered state down to 0.1 K. Cu3(HIB)2 also lacks evidence of a phase transition above 0.1 K, with a substantial, field-dependent, magnetic contribution below ∼5 K. Despite them being superficially in agreement with the expectations of magnetic frustration and spin liquid physics, we ascribe these observations to the stacking faults found from a detailed analysis of synchrotron X-ray diffraction data. At the same time, our results demonstrate that these MOFs exhibit localized magnetism with simultaneous proximity to a metallic state, thus opening up opportunities to explore the connection between the insulating and metallic ground states of kagomé materials in a highly tunable chemical platform.

12.
Inorg Chem ; 61(7): 3007-3017, 2022 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-35143187

RESUMO

Combining neutron diffraction with pair distribution function analysis, we have uncovered hidden reduced symmetry in the correlated metallic d1 perovskite, SrVO3. Specifically, we show that both the local and global structures are better described using a GdFeO3 distorted (orthorhombic) model as opposed to the ideal cubic ABO3 perovskite type. Recent reports of imaginary phonon frequencies in the density functional theory (DFT)-calculated phonon dispersion for cubic SrVO3 suggest a possible origin of this observed non-cubicity. Namely, the imaginary frequencies computed could indicate that the cubic crystal structure is unstable at T = 0 K. However, our DFT calculations provide compelling evidence that point defects in the form of oxygen vacancies, and not an observable symmetry breaking associated with calculated imaginary frequencies, primarily result in the observed non-cubicity of SrVO3. These experimental and computational results are broadly impactful because they reach into the thin-film and theoretical communities who have shown that SrVO3 is a technologically viable transparent conducting oxide material and have used SrVO3 to develop theoretical methods, respectively.

13.
J Am Chem Soc ; 143(45): 19033-19042, 2021 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-34748316

RESUMO

Oxide perovskites offer improved stability compared to halide perovskite compounds for optoelectronic applications. Here, we report the first gold-containing double perovskite, Ba2AuIO6, and compare it to Ba2AgIO6 and Ba2NaIO6. Ba2AuIO6 and Ba2AgIO6 exhibit a monoclinic distortion from the cubic perovskite structure possessed by Ba2NaIO6 and have similar lattice constants despite the nominally larger size of Au+ compared to Ag+. Ba2AgIO6 shows photoluminescence (PL) at 2.10 eV, and Ba2AuIO6 exhibits PL at 1.30 and 1.47 eV. As prepared, both compounds appear stable under visible light at room temperature but decompose when subjected to gentle heating followed by illumination. Our data suggest that this behavior is due to the presence of -OH defects in the crystal structures. This discovery provides a new route to semiconductors with a near-IR band gap and identifies engineering challenges that must be addressed to use oxide perovskites for optoelectronic devices.

14.
ACS Cent Sci ; 7(8): 1381-1390, 2021 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-34471681

RESUMO

Chemical bonding in 2D layered materials and van der Waals solids is central to understanding and harnessing their unique electronic, magnetic, optical, thermal, and superconducting properties. Here, we report the discovery of spontaneous, bidirectional, bilayer twisting (twist angle ∼4.5°) in the metallic kagomé MgCo6Ge6 at T = 100(2) K via X-ray diffraction measurements, enabled by the preparation of single crystals by the Laser Bridgman method. Despite the appearance of static twisting on cooling from T ∼300 to 100 K, no evidence for a phase transition was found in physical property measurements. Combined with the presence of an Einstein phonon mode contribution in the specific heat, this implies that the twisting exists at all temperatures but is thermally fluctuating at room temperature. Crystal Orbital Hamilton Population analysis demonstrates that the cooperative twisting between layers stabilizes the Co-kagomé network when coupled to strongly bonded and rigid (Ge2) dimers that connect adjacent layers. Further modeling of the displacive disorder in the crystal structure shows the presence of a second, Mg-deficient, stacking sequence. This alternative stacking sequence also exhibits interlayer twisting, but with a different pattern, consistent with the change in electron count due to the removal of Mg. Magnetization, resistivity, and low-temperature specific heat measurements are all consistent with a Pauli paramagnetic, strongly correlated metal. Our results provide crucial insight into how chemical concepts lead to interesting electronic structures and behaviors in layered materials.

15.
Chem Rev ; 121(5): 2898-2934, 2021 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-33156611

RESUMO

Quantum spin liquids are an exciting playground for exotic physical phenomena and emergent many-body quantum states. The realization and discovery of quantum spin liquid candidate materials and associated phenomena lie at the intersection of solid-state chemistry, condensed matter physics, and materials science and engineering. In this review, we provide the current status of the crystal chemistry, synthetic techniques, physical properties, and research methods in the field of quantum spin liquids. We highlight a number of specific quantum spin liquid candidate materials and their structure-property relationships, elucidating their fascinating behavior and connecting it to the intricacies of their structures. Furthermore, we share our thoughts on defects and their inevitable presence in materials, of which quantum spin liquids are no exception, which can complicate the interpretation of characterization of these materials, and urge the community to extend their attention to materials preparation and data analysis, cognizant of the impact of defects. This review was written with the intention of providing guidance on improving the materials design and growth of quantum spin liquids, and to paint a picture of the beauty of the underlying chemistry of this exciting class of materials.

16.
Inorg Chem ; 59(23): 17251-17258, 2020 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-33164501

RESUMO

A family of high entropy oxides with the formula Mg2Ta3Ln3O14 (Ln = La, Pr, Nd, Sm, Eu, Gd) has been discovered and synthesized. Single crystals, 5 mm OD × 2.5 cm, for Ln = Nd have been grown using the laser optical floating zone technique. Crystal orientations are confirmed by Laue diffraction, and structure solutions were obtained via single crystal X-ray diffraction. The structure is found to be a partially disordered pyrochlore, space group Fd-3m, fractional chemical formula (Mg0.25Nd0.75)2(Mg0.25Ta0.75)2O7. Magnetization measurements indicate ordinary paramagnetic behavior in all compounds down to T = 2 K, except in the Eu variant which possesses Van Vleck paramagnetism. Specific heat measurements for Ln = Nd shows no phase transitions between T = 300 and 2 K. We demonstrate the ability to prepare magnetically disordered materials by substitution of Mg with Ni, Mn, and Co, demonstrating the flexibility of this family in accommodating defects. The stabilization of these compounds could be due to the entropy gain associated with defects, showcasing a "materials by design" approach by using disorder to stabilize novel magnetic and optical materials. Our work also demonstrates the feasibility of preparing high entropy oxides in single crystalline form.

17.
Sci Adv ; 6(31): eabb6003, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32789181

RESUMO

The anomalous Hall effect (AHE) is one of the most fundamental phenomena in physics. In the highly conductive regime, ferromagnetic metals have been the focus of past research. Here, we report a giant extrinsic AHE in KV3Sb5, an exfoliable, highly conductive semimetal with Dirac quasiparticles and a vanadium Kagome net. Even without report of long range magnetic order, the anomalous Hall conductivity reaches 15,507 Ω-1 cm-1 with an anomalous Hall ratio of ≈ 1.8%; an order of magnitude larger than Fe. Defying theoretical expectations, KV3Sb5 shows enhanced skew scattering that scales quadratically, not linearly, with the longitudinal conductivity, possibly arising from the combination of highly conductive Dirac quasiparticles with a frustrated magnetic sublattice. This allows the possibility of reaching an anomalous Hall angle of 90° in metals. This observation raises fundamental questions about AHEs and opens new frontiers for AHE and spin Hall effect exploration, particularly in metallic frustrated magnets.

18.
J Phys Condens Matter ; 32(30): 304004, 2020 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-32213671

RESUMO

Understanding the electronic transport properties of layered, van der Waals transition metal halides (TMHs) and chalcogenides is a highly active research topic today. Of particular interest is the evolution of those properties with changing thickness as the 2D limit is approached. Here, we present the electrical conductivity of exfoliated single crystals of the TMH, cluster magnet, Nb3Cl8, over a wide range of thicknesses both with and without hexagonal boron nitride (hBN) encapsulation. The conductivity is found to increase by more than three orders of magnitude when the thickness is decreased from 280 µm to 5 nm, at 300 K. At low temperatures and below ∼50 nm, the conductance becomes thickness independent, implying surface conduction is dominating. Temperature dependent conductivity measurements indicate Nb3Cl8 is an insulator, however, the effective activation energy decreases from a bulk value of 310 meV to 140 meV by 5 nm. X-ray photoelectron spectroscopy (XPS) shows mild surface oxidation in devices without hBN capping, however, no significant difference in transport is observed when compared to the capped devices, implying the thickness dependent transport behavior is intrinsic to the material. A conduction mechanism comprised of a higher conductivity surface channel in parallel with a lower conductivity interlayer channel is discussed.

19.
Angew Chem Int Ed Engl ; 59(27): 10996-11002, 2020 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-32202032

RESUMO

Samarium hexaboride is an anomaly, having many exotic and seemingly mutually incompatible properties. It was proposed to be a mixed-valent semiconductor, and later a topological Kondo insulator, and yet has a Fermi surface despite being an insulator. We propose a new and unified understanding of SmB6 centered on the hitherto unrecognized dynamical bonding effect: the coexistence of two Sm-B bonding modes within SmB6 , corresponding to different oxidation states of the Sm. The mixed valency arises in SmB6 from thermal population of these distinct minima enabled by motion of B. Our model simultaneously explains the thermal valence fluctuations, appearance of magnetic Fermi surface, excess entropy at low temperatures, pressure-induced phase transitions, and related features in Raman spectra and their unexpected dependence on temperature and boron isotope.

20.
Phys Rev B ; 102(22)2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37719682

RESUMO

The Kitaev model is a rare example of an analytically solvable and physically instantiable Hamiltonian yielding a topological quantum spin liquid ground state. Here we report signatures of Kitaev spin liquid physics in the honeycomb magnet Li3Co2SbO6, built of high-spin d7 (Co2+) ions, in contrast to the more typical low-spin d5 electron configurations in the presence of large spin-orbit coupling. Neutron powder diffraction measurements, heat capacity, and magnetization studies support the development of a long-range antiferromagnetic order space group of CC2/m, below TN = 11 K at µ0H = 0 T. The magnetic entropy recovered between T = 2 and 50 K is estimated to be 0.6Rln2, in good agreement with the value expected for systems close to a Kitaev quantum spin liquid state. The temperature-dependent magnetic order parameter demonstrates a ß value of 0.19(3), consistent with XY anisotropy and in-plane ordering, with Ising-like interactions between layers. Further, we observe a spin-flop-driven crossover to ferromagnetic order with space group of C2/m under an applied magnetic field of µ0H ≈ 0.7 T at T = 2 K. Magnetic structure analysis demonstrates these magnetic states are competing at finite applied magnetic fields even below the spin-flop transition. Both the d7 compass model, a quantitative comparison of the specific heat of Li3Co2SbO6, and related honeycomb cobaltates to the anisotropic Kitaev model further support proximity to a Kitaev spin liquid state. This material demonstrates the rich playground of high-spin d7 systems for spin liquid candidates and complements known d5 Ir- and Ru-based materials.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA