Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 13(1): 12911, 2023 08 09.
Artigo em Inglês | MEDLINE | ID: mdl-37558924

RESUMO

Immunity-related GTPase family M (IRGM), located on human chromosome 5q33.1, encodes a protein that promotes autophagy and suppresses the innate immune response. The minor allele of rs13361189 (-4299T>C), a single nucleotide polymorphism in the IRGM promoter, has been associated with several diseases, including Crohn's disease and tuberculosis. Although patterns of linkage disequilibrium and minor allele frequency for this polymorphism differ dramatically between subjects of European and African descent, studies of rs13361189 have predominantly been conducted in Europeans and the mechanism of association is poorly understood. We recruited a cohort of 68 individuals (30 White, 34 African American, 4 other race) with varying rs13361189 genotypes and assessed a panel of immune response measures including whole blood cytokine induction following ex vivo stimulation with Toll-like Receptor ligands. Minor allele carriers were found to have increased serum immunoglobulin M, C-reactive protein, and circulating CD8+ T cells. No differences in whole blood cytokines were observed between minor allele carriers and non-carriers in the overall study population; however, minor allele status was associated with increased induction of a subset of cytokines among African American subjects, and decreased induction among White subjects. These findings underline the importance of broad racial inclusion in genetic studies of immunity.


Assuntos
Citocinas , Predisposição Genética para Doença , Humanos , Alelos , Citocinas/genética , Linfócitos T CD8-Positivos , Estudos de Casos e Controles , Proteínas de Ligação ao GTP/genética , Polimorfismo de Nucleotídeo Único
2.
Am J Respir Cell Mol Biol ; 69(6): 623-637, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37523502

RESUMO

Single-cell RNA sequencing (scRNA-seq) of BAL cells has provided insights into coronavirus disease (COVID-19). However, reports have been limited by small patient cohorts. We performed a meta-analysis of BAL scRNA-seq data from healthy control subjects (n = 13) and patients with COVID-19 (n = 20), sourced from six independent studies (167,280 high-quality cells in total). Consistent with the source reports, increases in infiltrating leukocyte subtypes were noted, several with type I IFN signatures and unique gene expression signatures associated with transcellular chemokine signaling. Noting dramatic reductions of inferred NKX2-1 and NR4A1 activity in alveolar epithelial type II (AT-II) cells, we modeled pseudotemporal AT-II-to-AT-I progression. This revealed changes in inferred AT-II cell metabolic activity, increased transitional cells, and a previously undescribed AT-I state. This cell state was conspicuously marked by the induction of genes of the epidermal differentiation complex, including the cornified envelope protein SPRR3 (small proline-rich protein 3), upregulation of multiple KRT (keratin) genes, inferred mitochondrial dysfunction, and cell death signatures including apoptosis and ferroptosis. Immunohistochemistry of lungs from patients with COVID-19 confirmed upregulation and colocalization of KRT13 and SPRR3 in the distal airspaces. Forced overexpression of SPRR3 in human alveolar epithelial cells ex vivo did not activate caspase-3 or upregulate KRT13, suggesting that SPRR3 marks an AT-I cornification program in COVID-19 but is not sufficient for phenotypic changes.


Assuntos
Células Epiteliais Alveolares , COVID-19 , Humanos , COVID-19/genética , COVID-19/metabolismo , Pulmão , Células Epiteliais/metabolismo , Análise de Sequência de RNA
3.
JCI Insight ; 8(7)2023 04 10.
Artigo em Inglês | MEDLINE | ID: mdl-36821369

RESUMO

Cholesterol-25-hydroxylase (CH25H), the biosynthetic enzyme for 25-hydroxycholesterol (25HC), is most highly expressed in the lung, but its role in lung biology is poorly defined. Recently, we reported that Ch25h is induced in monocyte-derived macrophages recruited to the airspace during resolution of lung inflammation and that 25HC promotes liver X receptor-dependent (LXR-dependent) clearance of apoptotic neutrophils by these cells. Ch25h and 25HC are, however, also robustly induced by lung-resident cells during the early hours of lung inflammation, suggesting additional cellular sources and targets. Here, using Ch25h-/- mice and exogenous 25HC in lung injury models, we provide evidence that 25HC sustains proinflammatory cytokines in the airspace and augments lung injury, at least in part, by inducing LXR-independent endoplasmic reticulum stress and endothelial leak. Suggesting an autocrine effect in endothelium, inhaled LPS upregulates pulmonary endothelial Ch25h, and non-hematopoietic Ch25h deletion is sufficient to confer lung protection. In patients with acute respiratory distress syndrome, airspace 25HC and alveolar macrophage CH25H were associated with markers of microvascular leak, endothelial activation, endoplasmic reticulum stress, inflammation, and clinical severity. Taken together, our findings suggest that 25HC deriving from and acting on different cell types in the lung communicates distinct, temporal LXR-independent and -dependent signals to regulate inflammatory homeostasis.


Assuntos
Lesão Pulmonar Aguda , Hidroxicolesteróis , Animais , Camundongos , Hidroxicolesteróis/metabolismo , Hidroxicolesteróis/farmacologia , Macrófagos Alveolares/metabolismo , Lesão Pulmonar Aguda/induzido quimicamente
4.
JCI Insight ; 5(11)2020 06 04.
Artigo em Inglês | MEDLINE | ID: mdl-32343675

RESUMO

Alveolar macrophages (AM) play a central role in initiation and resolution of lung inflammation, but the integration of these opposing core functions is poorly understood. AM expression of cholesterol 25-hydroxylase (CH25H), the primary biosynthetic enzyme for 25-hydroxycholesterol (25HC), far exceeds the expression of macrophages in other tissues, but no role for CH25H has been defined in lung biology. As 25HC is an agonist for the antiinflammatory nuclear receptor, liver X receptor (LXR), we speculated that CH25H might regulate inflammatory homeostasis in the lung. Here, we show that, of natural oxysterols or sterols, 25HC is induced in the inflamed lung of mice and humans. Ch25h-/- mice fail to induce 25HC and LXR target genes in the lung after LPS inhalation and exhibit delayed resolution of airway neutrophilia, which can be rescued by systemic treatment with either 25HC or synthetic LXR agonists. LXR-null mice also display delayed resolution, suggesting that native oxysterols promote resolution. During resolution, Ch25h is induced in macrophages upon their encounter with apoptotic cells and is required for LXR-dependent prevention of AM lipid overload, induction of Mertk, efferocytic resolution of airway neutrophilia, and induction of TGF-ß. CH25H/25HC/LXR is, thus, an inducible metabolic axis that programs AMs for efferocytic resolution of inflammation.


Assuntos
Pulmão/enzimologia , Macrófagos Alveolares/enzimologia , Pneumonia/enzimologia , Esteroide Hidroxilases/metabolismo , Animais , Feminino , Inflamação/enzimologia , Inflamação/genética , Inflamação/patologia , Receptores X do Fígado/genética , Receptores X do Fígado/metabolismo , Pulmão/patologia , Macrófagos Alveolares/patologia , Masculino , Camundongos , Camundongos Knockout , Pneumonia/genética , Pneumonia/patologia , Esteroide Hidroxilases/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA