Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Cancer Res ; 83(23): 3901-3919, 2023 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-37702657

RESUMO

Multiple myeloma remains an incurable malignancy due to acquisition of intrinsic programs that drive therapy resistance. Here we report that casein kinase-1δ (CK1δ) and CK1ε are therapeutic targets in multiple myeloma that are necessary to sustain mitochondrial metabolism. Specifically, the dual CK1δ/CK1ε inhibitor SR-3029 had potent in vivo and ex vivo anti-multiple myeloma activity, including against primary multiple myeloma patient specimens. RNA sequencing (RNA-seq) and metabolic analyses revealed inhibiting CK1δ/CK1ε disables multiple myeloma metabolism by suppressing genes involved in oxidative phosphorylation (OxPhos), reducing citric acid cycle intermediates, and suppressing complexes I and IV of the electron transport chain. Finally, sensitivity of multiple myeloma patient specimens to SR-3029 correlated with elevated expression of mitochondrial genes, and RNA-seq from 687 multiple myeloma patient samples revealed that increased CSNK1D, CSNK1E, and OxPhos genes correlate with disease progression and inferior outcomes. Thus, increases in mitochondrial metabolism are a hallmark of multiple myeloma progression that can be disabled by targeting CK1δ/CK1ε. SIGNIFICANCE: CK1δ and CK1ε are attractive therapeutic targets in multiple myeloma whose expression increases with disease progression and connote poor outcomes, and that are necessary to sustain expression of genes directing OxPhos.


Assuntos
Caseína Quinase Idelta , Mieloma Múltiplo , Humanos , Caseína Quinase Idelta/genética , Caseína Quinase Idelta/metabolismo , Mieloma Múltiplo/genética , Sobrevivência Celular , Fosforilação , Progressão da Doença
2.
Bioinformatics ; 38(16): 4002-4010, 2022 08 10.
Artigo em Inglês | MEDLINE | ID: mdl-35751591

RESUMO

MOTIVATION: Time-lapse microscopy is a powerful technique that relies on images of live cells cultured ex vivo that are captured at regular intervals of time to describe and quantify their behavior under certain experimental conditions. This imaging method has great potential in advancing the field of precision oncology by quantifying the response of cancer cells to various therapies and identifying the most efficacious treatment for a given patient. Digital image processing algorithms developed so far require high-resolution images involving very few cells originating from homogeneous cell line populations. We propose a novel framework that tracks cancer cells to capture their behavior and quantify cell viability to inform clinical decisions in a high-throughput manner. RESULTS: The brightfield microscopy images a large number of patient-derived cells in an ex vivo reconstruction of the tumor microenvironment treated with 31 drugs for up to 6 days. We developed a robust and user-friendly pipeline CancerCellTracker that detects cells in co-culture, tracks these cells across time and identifies cell death events using changes in cell attributes. We validated our computational pipeline by comparing the timing of cell death estimates by CancerCellTracker from brightfield images and a fluorescent channel featuring ethidium homodimer. We benchmarked our results using a state-of-the-art algorithm implemented in ImageJ and previously published in the literature. We highlighted CancerCellTracker's efficiency in estimating the percentage of live cells in the presence of bone marrow stromal cells. AVAILABILITY AND IMPLEMENTATION: https://github.com/compbiolabucf/CancerCellTracker. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Assuntos
Antineoplásicos , Neoplasias , Humanos , Microscopia/métodos , Imagem com Lapso de Tempo , Software , Neoplasias/diagnóstico por imagem , Neoplasias/tratamento farmacológico , Medicina de Precisão , Algoritmos , Microambiente Tumoral
3.
JCI Insight ; 6(24)2021 12 22.
Artigo em Inglês | MEDLINE | ID: mdl-34793338

RESUMO

The clinical utility of histone/protein deacetylase (HDAC) inhibitors in combinatorial regimens with proteasome inhibitors for patients with relapsed and refractory multiple myeloma (MM) is often limited by excessive toxicity due to HDAC inhibitor promiscuity with multiple HDACs. Therefore, more selective inhibition minimizing off-target toxicity may increase the clinical effectiveness of HDAC inhibitors. We demonstrated that plasma cell development and survival are dependent upon HDAC11, suggesting this enzyme is a promising therapeutic target in MM. Mice lacking HDAC11 exhibited markedly decreased plasma cell numbers. Accordingly, in vitro plasma cell differentiation was arrested in B cells lacking functional HDAC11. Mechanistically, we showed that HDAC11 is involved in the deacetylation of IRF4 at lysine103. Further, targeting HDAC11 led to IRF4 hyperacetylation, resulting in impaired IRF4 nuclear localization and target promoter binding. Importantly, transient HDAC11 knockdown or treatment with elevenostat, an HDAC11-selective inhibitor, induced cell death in MM cell lines. Elevenostat produced similar anti-MM activity in vivo, improving survival among mice inoculated with 5TGM1 MM cells. Elevenostat demonstrated nanomolar ex vivo activity in 34 MM patient specimens and synergistic activity when combined with bortezomib. Collectively, our data indicated that HDAC11 regulates an essential pathway in plasma cell biology establishing its potential as an emerging theraputic vulnerability in MM.


Assuntos
Inibidores de Histona Desacetilases/uso terapêutico , Histonas/metabolismo , Mieloma Múltiplo/tratamento farmacológico , Plasmócitos/metabolismo , Animais , Inibidores de Histona Desacetilases/farmacologia , Humanos , Camundongos , Mieloma Múltiplo/fisiopatologia
4.
Blood Adv ; 5(19): 3776-3788, 2021 10 12.
Artigo em Inglês | MEDLINE | ID: mdl-34464977

RESUMO

Interactions between the inhibitor of apoptosis protein antagonist LCL161 and the histone deacetylase inhibitor panobinostat (LBH589) were examined in human multiple myeloma (MM) cells. LCL161 and panobinostat interacted synergistically to induce apoptosis in diverse MM cell lines, including those resistant to bortezomib (PS-R). Similar interactions were observed with other histone deacetylase inhibitors (MS-275) or inhibitors of apoptosis protein antagonists (birinapant). These events were associated with downregulation of the noncanonical (but not the canonical) NF-κB pathway and activation of the extrinsic, caspase-8-related apoptotic cascade. Coexposure of MM cells to LCL161/LBH589 induced TRAF3 upregulation and led to TRAF2 and NIK downregulation, diminished expression of BCL-XL, and induction of γH2A.X. Ectopic expression of TRAF2, NIK, or BCL-XL, or short hairpin RNA TRAF3 knock-down, significantly reduced LCL161/LBH589 lethality, as did ectopic expression of dominant-negative FADD. Stromal/microenvironmental factors failed to diminish LCL161/LBH589-induced cell death. The LCL161/LBH589 regimen significantly increased cell killing in primary CD138+ cells (N = 31) and was particularly effective in diminishing the primitive progenitor cell-enriched CD138-/19+/20+/27+ population (N = 23) but was nontoxic to normal CD34+ cells. Finally, combined LCL161/LBH589 treatment significantly increased survival compared with single-agent treatment in an immunocompetent 5TGM1 murine MM model. Together, these findings argue that LCL161 interacts synergistically with LBH589 in MM cells through a process involving inactivation of the noncanonical NF-κB pathway and activation of the extrinsic apoptotic pathway, upregulation of TRAF3, and downregulation of TRAF2/BCL-XL. Notably, this regimen overcomes various forms of resistance, is active against primary MM cells, and displays significant in vivo activity. This strategy warrants further consideration in MM.


Assuntos
Inibidores de Histona Desacetilases , Mieloma Múltiplo , Animais , Caspase 8/genética , Linhagem Celular Tumoral , Inibidores de Histona Desacetilases/farmacologia , Humanos , Camundongos , Mieloma Múltiplo/tratamento farmacológico , NF-kappa B
5.
Cancers (Basel) ; 13(11)2021 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-34071205

RESUMO

Multiple myeloma is a genetically complex hematologic neoplasia in which malignant plasma cells constantly operate at the maximum limit of their unfolded protein response (UPR) due to a high secretory burden of immunoglobulins and cytokines. The endoplasmic reticulum (ER) resident protein disulfide isomerase, PDIA1 is indispensable for maintaining structural integrity of cysteine-rich antibodies and cytokines that require accurate intramolecular disulfide bond arrangement. PDIA1 expression analysis from RNA-seq of multiple myeloma patients demonstrated an inverse relationship with survival in relapsed or refractory disease, supporting its critical role in myeloma persistence. Using a structure-guided medicinal chemistry approach, we developed a potent, orally bioavailable small molecule PDIA1 inhibitor CCF642-34. The inhibition of PDIA1 overwhelms the UPR in myeloma cells, resulting in their apoptotic cell death at doses that do not affect the normal CD34+ hematopoietic stem and progenitor cells. Bortezomib resistance leads to increased PDIA1 expression and thus CCF642-34 sensitivity, suggesting that proteasome inhibitor resistance leads to PDIA1 dependence for proteostasis and survival. CCF642-34 induces acute unresolvable UPR in myeloma cells, and oral treatment increased survival of mice in the syngeneic 5TGM1 model of myeloma. Results support development of CCF642-34 to selectively target the plasma cell program and overcome the treatment-refractory state in myeloma.

6.
J Proteome Res ; 20(6): 3134-3149, 2021 06 04.
Artigo em Inglês | MEDLINE | ID: mdl-34014671

RESUMO

Multiple myeloma is an incurable hematological malignancy that impacts tens of thousands of people every year in the United States. Treatment for eligible patients involves induction, consolidation with stem cell rescue, and maintenance. High-dose therapy with a DNA alkylating agent, melphalan, remains the primary drug for consolidation therapy in conjunction with autologous stem-cell transplantation; as such, melphalan resistance remains a relevant clinical challenge. Here, we describe a proteometabolomic approach to examine mechanisms of acquired melphalan resistance in two cell line models. Drug metabolism, steady-state metabolomics, activity-based protein profiling (ABPP, data available at PRIDE: PXD019725), acute-treatment metabolomics, and western blot analyses have allowed us to further elucidate metabolic processes associated with melphalan resistance. Proteometabolomic data indicate that drug-resistant cells have higher levels of pentose phosphate pathway metabolites. Purine, pyrimidine, and glutathione metabolisms were commonly altered, and cell-line-specific changes in metabolite levels were observed, which could be linked to the differences in steady-state metabolism of naïve cells. Inhibition of selected enzymes in purine synthesis and pentose phosphate pathways was evaluated to determine their potential to improve melphalan's efficacy. The clinical relevance of these proteometabolomic leads was confirmed by comparison of tumor cell transcriptomes from newly diagnosed MM patients and patients with relapsed disease after treatment with high-dose melphalan and autologous stem-cell transplantation. The observation of common and cell-line-specific changes in metabolite levels suggests that omic approaches will be needed to fully examine melphalan resistance in patient specimens and define personalized strategies to optimize the use of high-dose melphalan.


Assuntos
Transplante de Células-Tronco Hematopoéticas , Mieloma Múltiplo , Humanos , Melfalan/farmacologia , Metabolômica , Mieloma Múltiplo/tratamento farmacológico , Transplante Autólogo
7.
Cell Rep ; 34(11): 108870, 2021 03 16.
Artigo em Inglês | MEDLINE | ID: mdl-33730585

RESUMO

Ibrutinib, a bruton's tyrosine kinase (BTK) inhibitor, provokes robust clinical responses in aggressive mantle cell lymphoma (MCL), yet many patients relapse with lethal Ibrutinib-resistant (IR) disease. Here, using genomic, chemical proteomic, and drug screen profiling, we report that enhancer remodeling-mediated transcriptional activation and adaptive signaling changes drive the aggressive phenotypes of IR. Accordingly, IR MCL cells are vulnerable to inhibitors of the transcriptional machinery and especially so to inhibitors of cyclin-dependent kinase 9 (CDK9), the catalytic subunit of the positive transcription elongation factor b (P-TEFb) of RNA polymerase II (RNAPII). Further, CDK9 inhibition disables reprogrammed signaling circuits and prevents the emergence of IR in MCL. Finally, and importantly, we find that a robust and facile ex vivo image-based functional drug screening platform can predict clinical therapeutic responses of IR MCL and identify vulnerabilities that can be targeted to disable the evolution of IR.


Assuntos
Adenina/análogos & derivados , Resistencia a Medicamentos Antineoplásicos/genética , Linfoma de Célula do Manto/tratamento farmacológico , Linfoma de Célula do Manto/genética , Piperidinas/uso terapêutico , Transcrição Gênica , Adenina/farmacologia , Adenina/uso terapêutico , Animais , Proteínas de Ciclo Celular/antagonistas & inibidores , Proteínas de Ciclo Celular/metabolismo , Linhagem Celular Tumoral , Quinase 9 Dependente de Ciclina/antagonistas & inibidores , Quinase 9 Dependente de Ciclina/metabolismo , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Elementos Facilitadores Genéticos/genética , Humanos , Linfoma de Célula do Manto/enzimologia , Linfoma de Célula do Manto/patologia , Masculino , Camundongos Endogâmicos NOD , Camundongos SCID , Piperidinas/farmacologia , Proteínas Quinases/metabolismo , RNA Polimerase II/metabolismo , Transdução de Sinais/efeitos dos fármacos , Fatores de Transcrição/antagonistas & inibidores , Fatores de Transcrição/metabolismo , Transcrição Gênica/efeitos dos fármacos , Transcriptoma/genética , Resultado do Tratamento
8.
EBioMedicine ; 54: 102716, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32268267

RESUMO

BACKGROUND: Multiagent therapies, due to their ability to delay or overcome resistance, are a hallmark of treatment in multiple myeloma (MM). The growing number of therapeutic options in MM requires high-throughput combination screening tools to better allocate treatment, and facilitate personalized therapy. METHODS: A second-order drug response model was employed to fit patient-specific ex vivo responses of 203 MM patients to single-agent models. A novel pharmacodynamic model, developed to account for two-way combination effects, was tested with 130 two-drug combinations. We have demonstrated that this model is sufficiently parameterized by single-agent and fixed-ratio combination responses, by validating model estimates with ex vivo combination responses for different concentration ratios, using a checkerboard assay. This new model reconciles ex vivo observations from both Loewe and BLISS synergy models, by accounting for the dimension of time, as opposed to focusing on arbitrary time-points or drug effect. Clinical outcomes of patients were simulated by coupling patient-specific drug combination models with pharmacokinetic data. FINDINGS: Combination screening showed 1 in 5 combinations (21.43% by LD50, 18.42% by AUC) were synergistic ex vivo with statistical significance (P < 0.05), but clinical synergy was predicted for only 1 in 10 combinations (8.69%), which was attributed to the role of pharmacokinetics and dosing schedules. INTERPRETATION: The proposed framework can inform clinical decisions from ex vivo observations, thus providing a path toward personalized therapy using combination regimens. FUNDING: This research was funded by the H. Lee Moffitt Cancer Center Physical Sciences in Oncology (PSOC) Grant (1U54CA193489-01A1) and by H. Lee Moffitt Cancer Center's Team Science Grant. This work has been supported in part by the PSOC Pilot Project Award (5U54CA193489-04), the Translational Research Core Facility at the H. Lee Moffitt Cancer Center & Research Institute, an NCI-designated Comprehensive Cancer Center (P30-CA076292), the Pentecost Family Foundation, and Miles for Moffitt Foundation.


Assuntos
Antineoplásicos/uso terapêutico , Mieloma Múltiplo/tratamento farmacológico , Modelagem Computacional Específica para o Paciente , Idoso , Antineoplásicos/administração & dosagem , Antineoplásicos/farmacocinética , Relação Dose-Resposta a Droga , Sinergismo Farmacológico , Feminino , Humanos
9.
Cancer Cell ; 35(5): 752-766.e9, 2019 05 13.
Artigo em Inglês | MEDLINE | ID: mdl-31085176

RESUMO

Drug-tolerant "persister" tumor cells underlie emergence of drug-resistant clones and contribute to relapse and disease progression. Here we report that resistance to the BCL-2 targeting drug ABT-199 in models of mantle cell lymphoma and double-hit lymphoma evolves from outgrowth of persister clones displaying loss of 18q21 amplicons that harbor BCL2. Further, persister status is generated via adaptive super-enhancer remodeling that reprograms transcription and offers opportunities for overcoming ABT-199 resistance. Notably, pharmacoproteomic and pharmacogenomic screens revealed that persisters are vulnerable to inhibition of the transcriptional machinery and especially to inhibition of cyclin-dependent kinase 7 (CDK7), which is essential for the transcriptional reprogramming that drives and sustains ABT-199 resistance. Thus, transcription-targeting agents offer new approaches to disable drug resistance in B-cell lymphomas.

10.
Methods Mol Biol ; 1996: 273-296, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31127562

RESUMO

Drug resistance remains a critical problem for the treatment of multiple myeloma (MM), which can serve as a specific example for a highly prevalent unmet medical need across almost all cancer types. In MM, the therapeutic arsenal has expanded and diversified, yet we still lack in-depth molecular understanding of drug mechanisms of action and cellular pathways to therapeutic escape. For those reasons, preclinical models of drug resistance are developed and characterized using different approaches to gain insights into tumor biology and elucidate mechanisms of drug resistance. For MM, numerous drugs are used for treatment, including conventional chemotherapies (e.g., melphalan or L-phenylalanine nitrogen mustard), proteasome inhibitors (e.g., Bortezomib), and immunomodulators (e.g., Lenalidomide). These agents have diverse effects on the myeloma cells, and several mechanisms of drug resistance have been previously described. The disparity of these mechanisms and the complexity of these biological processes lead to the formation of complicated hypotheses that require omics approaches for efficient and effective analysis of model systems that can then be interpreted for patient benefit. Here, we describe the combination of metabolomics and proteomics to assess melphalan resistance in MM by examining three specific areas: drug metabolism, modulation of endogenous metabolites to assist in therapeutic escape, and changes in protein activity gauged by ATP probe uptake.


Assuntos
Antineoplásicos Alquilantes/farmacologia , Melfalan/farmacologia , Metabolômica/métodos , Mieloma Múltiplo/tratamento farmacológico , Proteômica/métodos , Antineoplásicos Alquilantes/uso terapêutico , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Cromatografia Líquida de Alta Pressão/métodos , Relação Dose-Resposta a Droga , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Humanos , Melfalan/uso terapêutico , Metaboloma/efeitos dos fármacos , Mieloma Múltiplo/metabolismo , Mieloma Múltiplo/patologia , Espectrometria de Massas em Tandem/métodos
11.
Cancer Res ; 77(12): 3336-3351, 2017 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-28400475

RESUMO

Multiple myeloma remains treatable but incurable. Despite a growing armamentarium of effective agents, choice of therapy, especially in relapse, still relies almost exclusively on clinical acumen. We have developed a system, Ex vivo Mathematical Myeloma Advisor (EMMA), consisting of patient-specific mathematical models parameterized by an ex vivo assay that reverse engineers the intensity and heterogeneity of chemosensitivity of primary cells from multiple myeloma patients, allowing us to predict clinical response to up to 31 drugs within 5 days after bone marrow biopsy. From a cohort of 52 multiple myeloma patients, EMMA correctly classified 96% as responders/nonresponders and correctly classified 79% according to International Myeloma Working Group stratification of level of response. We also observed a significant correlation between predicted and actual tumor burden measurements (Pearson r = 0.5658, P < 0.0001). Preliminary estimates indicate that, among the patients enrolled in this study, 60% were treated with at least one ineffective agent from their therapy combination regimen, whereas 30% would have responded better if treated with another available drug or combination. Two in silico clinical trials with experimental agents ricolinostat and venetoclax, in a cohort of 19 multiple myeloma patient samples, yielded consistent results with recent phase I/II trials, suggesting that EMMA is a feasible platform for estimating clinical efficacy of drugs and inclusion criteria screening. This unique platform, specifically designed to predict therapeutic response in multiple myeloma patients within a clinically actionable time frame, has shown high predictive accuracy in patients treated with combinations of different classes of drugs. The accuracy, reproducibility, short turnaround time, and high-throughput potential of this platform demonstrate EMMA's promise as a decision support system for therapeutic management of multiple myeloma. Cancer Res; 77(12); 3336-51. ©2017 AACR.


Assuntos
Algoritmos , Antineoplásicos/uso terapêutico , Técnicas de Apoio para a Decisão , Modelos Teóricos , Mieloma Múltiplo/tratamento farmacológico , Ensaios de Triagem em Larga Escala , Humanos
12.
Nat Commun ; 8: 14920, 2017 04 18.
Artigo em Inglês | MEDLINE | ID: mdl-28416797

RESUMO

The novel Bruton's tyrosine kinase inhibitor ibrutinib has demonstrated high response rates in B-cell lymphomas; however, a growing number of ibrutinib-treated patients relapse with resistance and fulminant progression. Using chemical proteomics and an organotypic cell-based drug screening assay, we determine the functional role of the tumour microenvironment (TME) in ibrutinib activity and acquired ibrutinib resistance. We demonstrate that MCL cells develop ibrutinib resistance through evolutionary processes driven by dynamic feedback between MCL cells and TME, leading to kinome adaptive reprogramming, bypassing the effect of ibrutinib and reciprocal activation of PI3K-AKT-mTOR and integrin-ß1 signalling. Combinatorial disruption of B-cell receptor signalling and PI3K-AKT-mTOR axis leads to release of MCL cells from TME, reversal of drug resistance and enhanced anti-MCL activity in MCL patient samples and patient-derived xenograft models. This study unifies TME-mediated de novo and acquired drug resistance mechanisms and provides a novel combination therapeutic strategy against MCL and other B-cell malignancies.


Assuntos
Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Linfoma de Célula do Manto/tratamento farmacológico , Pirazóis/farmacologia , Pirazóis/uso terapêutico , Pirimidinas/farmacologia , Pirimidinas/uso terapêutico , Adenina/análogos & derivados , Animais , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Humanos , Linfoma de Célula do Manto/patologia , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Alvo Mecanístico do Complexo 2 de Rapamicina/metabolismo , Camundongos , Piperidinas , Proteínas Quinases/metabolismo , Proteoma/metabolismo , Receptores de Antígenos de Linfócitos B/metabolismo , Transdução de Sinais/efeitos dos fármacos , Microambiente Tumoral/efeitos dos fármacos , Ensaios Antitumorais Modelo de Xenoenxerto
13.
Oncotarget ; 7(48): 78896-78909, 2016 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-27806331

RESUMO

Acquired proteasome-inhibitor (PI) resistance is a major obstacle in the treatment of multiple myeloma (MM). We investigated whether the clinical XPO1-inhibitor selinexor, when combined with bortezomib or carfilzomib, could overcome acquired resistance in MM. PI-resistant myeloma cell lines both in vitro and in vivo and refractory myeloma patient biopsies were treated with selinexor/bortezomib or carfilzomib and assayed for apoptosis. Mechanistic studies included NFκB pathway protein expression assays, immunofluorescence microscopy, ImageStream flow-cytometry, and proximity-ligation assays. IκBα knockdown and NFκB activity were measured in selinexor/bortezomib-treated MM cells. We found that selinexor restored sensitivity of PI-resistant MM to bortezomib and carfilzomib. Selinexor/bortezomib treatment inhibited PI-resistant MM tumor growth and increased survival in mice. Myeloma cells from PI-refractory MM patients were sensitized by selinexor to bortezomib and carfilzomib without affecting non-myeloma cells. Immunofluorescence microscopy, Western blot, and ImageStream analyses of MM cells showed increases in total and nuclear IκBα by selinexor/bortezomib. Proximity ligation found increased IκBα-NFκB complexes in treated MM cells. IκBα knockdown abrogated selinexor/bortezomib-induced cytotoxicity in MM cells. Selinexor/bortezomib treatment decreased NFκB transcriptional activity. Selinexor, when used with bortezomib or carfilzomib, has the potential to overcome PI drug resistance in MM. Sensitization may be due to inactivation of the NFκB pathway by IκBα.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Bortezomib/farmacologia , Núcleo Celular/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Hidrazinas/farmacologia , Carioferinas/antagonistas & inibidores , Mieloma Múltiplo/tratamento farmacológico , Inibidor de NF-kappaB alfa/metabolismo , Oligopeptídeos/farmacologia , Complexo de Endopeptidases do Proteassoma/metabolismo , Receptores Citoplasmáticos e Nucleares/antagonistas & inibidores , Triazóis/farmacologia , Transporte Ativo do Núcleo Celular , Animais , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Núcleo Celular/metabolismo , Núcleo Celular/patologia , Relação Dose-Resposta a Droga , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Carioferinas/metabolismo , Camundongos Endogâmicos NOD , Camundongos SCID , Mieloma Múltiplo/enzimologia , Mieloma Múltiplo/genética , Mieloma Múltiplo/patologia , Inibidor de NF-kappaB alfa/genética , NF-kappa B/genética , NF-kappa B/metabolismo , Estabilidade Proteica , Proteólise , Interferência de RNA , Receptores Citoplasmáticos e Nucleares/metabolismo , Fatores de Tempo , Transcrição Gênica , Transfecção , Ensaios Antitumorais Modelo de Xenoenxerto , Proteína Exportina 1
14.
J Hematol Oncol ; 9(1): 73, 2016 08 24.
Artigo em Inglês | MEDLINE | ID: mdl-27557643

RESUMO

BACKGROUND: Acquired drug resistance is the greatest obstacle to the successful treatment of multiple myeloma (MM). Despite recent advanced treatment options such as liposomal formulations, proteasome inhibitors, immunomodulatory drugs, myeloma-targeted antibodies, and histone deacetylase inhibitors, MM is still considered an incurable disease. METHODS: We investigated whether the clinical exportin 1 (XPO1) inhibitor selinexor (KPT-330), when combined with pegylated liposomal doxorubicin (PLD) or doxorubicin hydrochloride, could overcome acquired drug resistance in multidrug-resistant human MM xenograft tumors, four different multidrug-resistant MM cell lines, or ex vivo MM biopsies from relapsed/refractory patients. Mechanistic studies were performed to assess co-localization of topoisomerase II alpha (TOP2A), DNA damage, and siRNA knockdown of drug targets. RESULTS: Selinexor was found to restore sensitivity of multidrug-resistant 8226B25, 8226Dox6, 8226Dox40, and U266PSR human MM cells to doxorubicin to levels found in parental myeloma cell lines. NOD/SCID-γ mice challenged with drug-resistant or parental U266 human MM and treated with selinexor/PLD had significantly decreased tumor growth and increased survival with minimal toxicity. Selinexor/doxorubicin treatment selectively induced apoptosis in CD138/light-chain-positive MM cells without affecting non-myeloma cells in ex vivo-treated bone marrow aspirates from newly diagnosed or relapsed/refractory MM patients. Selinexor inhibited XPO1-TOP2A protein complexes (proximity ligation assay), preventing nuclear export of TOP2A in both parental and multidrug-resistant MM cell lines. Selinexor/doxorubicin treatment significantly increased DNA damage (comet assay/γ-H2AX) in both parental and drug-resistant MM cells. TOP2A knockdown reversed both the anti-tumor effect and significantly reduced DNA damage induced by selinexor/doxorubicin treatment. CONCLUSIONS: The combination of an XPO1 inhibitor and liposomal doxorubicin was highly effective against acquired drug resistance in in vitro MM models, in in vivo xenograft studies, and in ex vivo samples obtained from patients with relapsed/refractory myeloma. This drug combination synergistically induced TOP2A-mediated DNA damage and subsequent apoptosis. In addition, based on our preclinical data, we have initiated a phase I/II study with the XPO1 inhibitor selinexor and PLD (ClinicalTrials.gov NCT02186834). Initial results from both preclinical and clinical trials have shown significant promise for this drug combination for the treatment of MM.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Resistencia a Medicamentos Antineoplásicos , Mieloma Múltiplo/tratamento farmacológico , Animais , Apoptose/efeitos dos fármacos , Biópsia , Linhagem Celular Tumoral , Dano ao DNA/efeitos dos fármacos , Doxorrubicina/análogos & derivados , Doxorrubicina/uso terapêutico , Sinergismo Farmacológico , Xenoenxertos , Humanos , Hidrazinas/uso terapêutico , Carioferinas/antagonistas & inibidores , Camundongos , Mieloma Múltiplo/mortalidade , Mieloma Múltiplo/fisiopatologia , Polietilenoglicóis/uso terapêutico , Receptores Citoplasmáticos e Nucleares/antagonistas & inibidores , Taxa de Sobrevida , Inibidores da Topoisomerase II/uso terapêutico , Triazóis/uso terapêutico , Carga Tumoral/efeitos dos fármacos , Proteína Exportina 1
15.
J Vis Exp ; (101): e53070, 2015 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-26274375

RESUMO

In this work we describe a novel approach that combines ex vivo drug sensitivity assays and digital image analysis to estimate chemosensitivity and heterogeneity of patient-derived multiple myeloma (MM) cells. This approach consists in seeding primary MM cells freshly extracted from bone marrow aspirates into microfluidic chambers implemented in multi-well plates, each consisting of a reconstruction of the bone marrow microenvironment, including extracellular matrix (collagen or basement membrane matrix) and stroma (patient-derived mesenchymal stem cells) or human-derived endothelial cells (HUVECs). The chambers are drugged with different agents and concentrations, and are imaged sequentially for 96 hr through bright field microscopy, in a motorized microscope equipped with a digital camera. Digital image analysis software detects live and dead cells from presence or absence of membrane motion, and generates curves of change in viability as a function of drug concentration and exposure time. We use a computational model to determine the parameters of chemosensitivity of the tumor population to each drug, as well as the number of sub-populations present as a measure of tumor heterogeneity. These patient-tailored models can then be used to simulate therapeutic regimens and estimate clinical response.


Assuntos
Antineoplásicos/farmacologia , Ensaios de Seleção de Medicamentos Antitumorais/métodos , Ensaios de Triagem em Larga Escala/métodos , Mieloma Múltiplo/tratamento farmacológico , Medula Óssea/patologia , Células da Medula Óssea/patologia , Linhagem Celular Tumoral , Células Endoteliais/citologia , Humanos , Dispositivos Lab-On-A-Chip , Células-Tronco Mesenquimais/citologia , Mieloma Múltiplo/patologia , Células Tumorais Cultivadas
16.
J Immunol ; 185(3): 1606-15, 2010 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-20622119

RESUMO

GM-CSF, IL-3, and IL-5 are proinflammatory cytokines that control the production and function of myeloid and lymphoid cells. Their receptors are composed of a ligand-specific alpha subunit and a shared common signal-transducing beta subunit (beta common receptor or GM-CSFR beta [beta(c)]). The pleiotropic nature of biologic outcomes mediated by beta(c) and the presence of large, uncharacterized regions of its cytoplasmic domain suggest that much remains to be learned about its downstream signaling pathways. Although some previous work has attempted to link beta(c) with NF-kappaB activation, a definitive mechanism that mediates this pathway has not been described and, to date, it has not been clear whether the receptor can directly activate NF-kappaB. We demonstrate that NF-kappaB activation by beta(c) is dependent on TNFR-associated factor 6 (TRAF6) and that association of TRAF6 with beta(c) requires a consensus-binding motif found in other molecules known to interact with TRAF6. Furthermore, point mutation of this motif abrogated the ability of beta(c) to mediate NF-kappaB activation and reduced the viability of an IL-3-dependent hematopoietic cell line. Because this receptor plays a key role in hematopoiesis and the beta(c) cytoplasmic domain identified in this work mediates hematopoietic cell viability, this new pathway is likely to contribute to immune cell biology. This work is significant because it is the first description of a TRAF6-dependent signaling pathway associated with a type I cytokine receptor. It also suggests that TRAF6, a mediator of TNFR and TLR signaling, may be a common signaling intermediate in diverse cytokine receptor systems.


Assuntos
Subunidade beta Comum dos Receptores de Citocinas/fisiologia , NF-kappa B/fisiologia , Fator 6 Associado a Receptor de TNF/metabolismo , Transporte Ativo do Núcleo Celular/imunologia , Animais , Células Cultivadas , Células Clonais , Sequência Consenso , Subunidade beta Comum dos Receptores de Citocinas/antagonistas & inibidores , Subunidade beta Comum dos Receptores de Citocinas/metabolismo , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Fibroblastos/imunologia , Fibroblastos/metabolismo , Humanos , Camundongos , NF-kappa B/antagonistas & inibidores , NF-kappa B/metabolismo , Ligação Proteica/genética , Ligação Proteica/imunologia , Biossíntese de Proteínas/imunologia , Estrutura Terciária de Proteína/genética , Transporte Proteico/imunologia , Receptores de Fator Estimulador das Colônias de Granulócitos e Macrófagos/biossíntese , Receptores de Fator Estimulador das Colônias de Granulócitos e Macrófagos/metabolismo , Receptores de Fator Estimulador das Colônias de Granulócitos e Macrófagos/fisiologia , Fator 6 Associado a Receptor de TNF/deficiência , Fator 6 Associado a Receptor de TNF/genética , Fator 6 Associado a Receptor de TNF/fisiologia
17.
Eur J Haematol ; 84(3): 212-22, 2010 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-19922463

RESUMO

OBJECTIVES: Hematopoietic stroma promotes resistance to immune control by APO2L/TRAIL in multiple myeloma (MM) cells in part by increasing synthesis of the anti-apoptotic protein c-FLIP. Here, we tested whether bortezomib can reverse the APO2L/TRAIL environmental mediated-immune resistance (EM-IR). MATERIAL AND METHODS: MM cell lines (RPMI 8226 and U266) and CD138+ patient's MM cells were directly adhered to HS5 stroma exposed to HS5 or bone marrow stroma of patients with MM released soluble factors in a transwell system. Cells were treated with either APO2L/TRAIL (10 ng/mL), bortezomib (10 nm) or both. RESULTS: Pretreatment with bortezomib effectively overcomes APO2L/TRAIL apoptosis resistance in myeloma cell lines and in CD138+ cells while directly adhered or in transwell assay. Bortezomib was not cytotoxic to HS5 stroma cells and only altered monocyte chemotactic protein-2-3 and IL-10 levels in the stroma-myeloma milieu. Factors released by HS5 stroma increased expression of c-FLIP, induced STAT-3 and ERK phosphorylation and reduced DR4 receptor expression in MM cells. HS5 stroma-released factor(s) induced NF-kappaB activation after 20 h exposure in association with an enhanced c-FLIP transcription. Bortezomib effectively reduced c-FLIP protein expression without affecting other proteins. Bortezomib also increased DR4 and DR5 expression in the presence of stroma. CONCLUSIONS: These findings provide the rationale to combine bortezomib and APO2L/TRAIL to disrupt the influence of the stroma microenvironment on MM cells.


Assuntos
Apoptose/efeitos dos fármacos , Ácidos Borônicos/farmacologia , Mieloma Múltiplo/patologia , Inibidores de Proteases/farmacologia , Pirazinas/farmacologia , Células Estromais/efeitos dos fármacos , Ligante Indutor de Apoptose Relacionado a TNF/fisiologia , Ácidos Borônicos/uso terapêutico , Bortezomib , Proteína Reguladora de Apoptosis Semelhante a CASP8 e FADD/antagonistas & inibidores , Linhagem Celular Tumoral/efeitos dos fármacos , Células Cultivadas/efeitos dos fármacos , Células Cultivadas/metabolismo , Técnicas de Cocultura , Citocinas/biossíntese , Citocinas/genética , Ensaios de Seleção de Medicamentos Antitumorais , Sinergismo Farmacológico , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Proteínas de Neoplasias/antagonistas & inibidores , Proteínas de Neoplasias/biossíntese , Proteínas de Neoplasias/genética , Inibidores de Proteases/uso terapêutico , Pirazinas/uso terapêutico , Receptores do Ligante Indutor de Apoptose Relacionado a TNF/antagonistas & inibidores , Receptores do Ligante Indutor de Apoptose Relacionado a TNF/fisiologia , Receptores do Fator de Necrose Tumoral/antagonistas & inibidores , Receptores do Fator de Necrose Tumoral/fisiologia , Proteínas Recombinantes/farmacologia , Células Estromais/metabolismo , Ligante Indutor de Apoptose Relacionado a TNF/farmacologia , Evasão Tumoral/efeitos dos fármacos
18.
Nat Rev Cancer ; 9(9): 665-74, 2009 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-19693095

RESUMO

Environment-mediated drug resistance is a form of de novo drug resistance that protects tumour cells from the initial effects of diverse therapies. Surviving foci of residual disease can then develop complex and permanent acquired resistance in response to the selective pressure of therapy. Recent evidence indicates that environment-mediated drug resistance arises from an adaptive, reciprocal signalling dialogue between tumour cells and the surrounding microenvironment. We propose that new therapeutic strategies targeting this interaction should be applied during initial treatment to prevent the emergence of acquired resistance.


Assuntos
Resistencia a Medicamentos Antineoplásicos , Neoplasia Residual/patologia , Neoplasias/tratamento farmacológico , Neoplasias/patologia , Transdução de Sinais/efeitos dos fármacos , Células Estromais/efeitos dos fármacos , Humanos , Células Estromais/patologia
19.
Cancer Res ; 69(3): 1009-15, 2009 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-19155309

RESUMO

The bone marrow microenvironmental components interleukin (IL)-6 and fibronectin (FN) individually influence the proliferation and survival of multiple myeloma (MM) cells; however, in vivo, these effectors most likely work together. We examined signaling events, cell cycle progression, and levels of drug response in MM cells either adhered to FN via beta1 integrins, stimulated with IL-6, or treated with the two combined. Although G(1)-S cell cycle arrest associated with FN adhesion was overcome when IL-6 was added, the cell adhesion-mediated drug resistance (CAM-DR) was maintained in the presence of IL-6. Concomitant exposure of MM cells to IL-6 and FN adhesion revealed a dramatic increase in signal transducers and activators of transcription 3 (STAT3) phosphorylation, nuclear translocation, and DNA binding, compared with either IL-6 or FN adhesion alone in four MM cell lines. Importantly, this increase in STAT3 activation correlated with a novel association between STAT3 and gp130 in cells adhered to FN before stimulation with IL-6, relative to nonadherent cells. Taken together, these results suggest a mechanism by which collaborative signaling by beta1 integrin and gp130 confers an increased survival advantage to MM cells.


Assuntos
Integrina beta1/metabolismo , Interleucina-6/metabolismo , Mieloma Múltiplo/patologia , Fator de Transcrição STAT3/metabolismo , Adesão Celular/fisiologia , Processos de Crescimento Celular/fisiologia , Linhagem Celular Tumoral , Receptor gp130 de Citocina/metabolismo , DNA de Neoplasias/metabolismo , Resistencia a Medicamentos Antineoplásicos , Fibronectinas/metabolismo , Humanos , Interleucina-6/farmacologia , Mieloma Múltiplo/metabolismo , Fosforilação , Transdução de Sinais
20.
Colloids Surf B Biointerfaces ; 67(1): 140-4, 2008 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-18815015

RESUMO

Using a previously described method for the functionalization of glass substrates with glycosaminoglycans (GAGs), in vitro experimental comparison of adhesion levels of cancer cells to glycosaminoglycan-modified substrates was performed with non-treated and heparin-treated human cancer cells of different metastatic activity. For both non-treated and heparin-treated cells, our results indicate that heparan sulfate is the preferred substrate for adhesion while keratan sulfate shows anti-adhesive properties. The observed net effect of heparin is a cell-dependent reduction in the adhesion figures. Overall, our results suggest that tissues with higher composition of heparan sulfate chains may be preferential metastatic targets and indicate that the effective use of heparin as anti-metastatic or anti-inflammatory agent may also depend on glycosaminoglycan composition of the affected organs.


Assuntos
Materiais Revestidos Biocompatíveis , Vidro , Glicosaminoglicanos , Neoplasias/metabolismo , Adesão Celular/fisiologia , Linhagem Celular Tumoral , Materiais Revestidos Biocompatíveis/metabolismo , Glicosaminoglicanos/metabolismo , Heparina/metabolismo , Humanos , Neoplasias/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA