Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
World J Pediatr Congenit Heart Surg ; 15(5): 597-603, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38780414

RESUMO

Partial heart transplantation is a new approach to deliver growing heart valve implants. Partial heart transplants differ from heart transplants because only the part of the heart containing the necessary heart valve is transplanted. This allows partial heart transplants to grow, similar to the valves in heart transplants. However, the transplant biology of partial heart transplantation remains unexplored. This is a critical barrier to progress of the field. Without knowledge about the specific transplant biology of partial heart transplantation, children with partial heart transplants are empirically treated like children with heart transplants because the valves in heart transplants are known to grow. In order to progress the field, an animal model for partial heart transplantation is necessary. Here, we contribute our surgical protocol for partial heart transplantation in growing piglets. All aspects of partial heart transplantation, including the donor procedure, the recipient procedure, and recipient perioperative care are described in detail. There are important nuances in the conduct of virtually all aspects of open heart surgery that differs in piglets from humans. Our surgical protocol, which is based on our experience with 34 piglets, will allow other investigators to leverage our experience to seek fundamental knowledge about the nature of partial heart transplants. This is significant because the partial heart transplant model in piglets is complex and very resource intensive.


Assuntos
Transplante de Coração , Animais , Transplante de Coração/métodos , Suínos , Modelos Animais , Modelos Animais de Doenças , Valvas Cardíacas/cirurgia
2.
Clin Transplant ; 37(10): e15118, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37658824

RESUMO

Patients undergoing extracorporeal membrane oxygenation (ECMO) are susceptible to thrombosis, which is a major cause of death and morbidity. However, there is no objective ECMO thrombosis grading scale to standardize evaluation, guide treatment, and facilitate further research. In this letter, we propose an objective grading scale for ECMO circuit thrombosis based on physical characteristics and location within the circuit. This ECMO thrombosis scale will allow for protocolized escalation of ECMO thrombosis treatment, ranging from watchful observation, intensified anticoagulation, and circuit exchange.


Assuntos
Oxigenação por Membrana Extracorpórea , Trombose , Humanos , Trombose/diagnóstico , Trombose/etiologia , Coagulação Sanguínea , Anticoagulantes
3.
J Clin Invest ; 132(21)2022 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-36074578

RESUMO

Graft-versus-host disease (GVHD), manifesting as either acute (aGVHD) or chronic (cGVHD), presents significant life-threatening complications following allogeneic hematopoietic cell transplantation. Here, we investigated Friend virus leukemia integration 1 (Fli-1) in GVHD pathogenesis and validated Fli-1 as a therapeutic target. Using genetic approaches, we found that Fli-1 dynamically regulated different T cell subsets in allogeneic responses and pathogenicity in the development of aGVHD and cGVHD. Compared with homozygous Fli1-deficient or WT T cells, heterozygous Fli1-deficient T cells induced the mildest GVHD, as evidenced by the lowest Th1 and Th17 cell differentiation. Single-cell RNA-Seq analysis revealed that Fli-1 differentially regulated CD4+ and CD8+ T cell responses. Fli-1 promoted the transcription of Th1/Th17 pathways and T cell receptor-inducible (TCR-inducible) transcription factors in CD4+ T cells, while suppressing activation- and function-related gene pathways in CD8+ T cells. Importantly, a low dose of camptothecin, topotecan, or etoposide acted as a potent Fli-1 inhibitor and significantly attenuated GVHD severity, while preserving the graft-versus-leukemia (GVL) effect. This observation was extended to a xenograft model, in which GVHD was induced by human T cells. In conclusion, we provide evidence that Fli-1 plays a crucial role in alloreactive CD4+ T cell activation and differentiation and that targeting Fli-1 may be an attractive strategy for treating GVHD without compromising the GVL effect.


Assuntos
Doença Enxerto-Hospedeiro , Transplante de Células-Tronco Hematopoéticas , Leucemia , Linfócitos T , Humanos , Vírus da Leucemia Murina de Friend , Doença Enxerto-Hospedeiro/genética , Efeito Enxerto vs Leucemia , Transplante de Células-Tronco Hematopoéticas/efeitos adversos , Fatores de Transcrição , Transplante Homólogo/efeitos adversos , Linfócitos T/imunologia
4.
Blood Adv ; 6(10): 3036-3052, 2022 05 24.
Artigo em Inglês | MEDLINE | ID: mdl-35073581

RESUMO

Chronic graft-versus-host disease (cGVHD) remains a major obstacle impeding successful allogeneic hematopoietic cell transplantation (HCT). MicroRNAs (miRs) play key roles in immune regulation during acute GVHD development. Preclinical studies to identify miRs that affect cGVHD pathogenesis are required to develop these as potential lifesaving interventions. Using oligonucleotide array, we identified miR-31, which was significantly elevated in allogeneic T cells after HCT in mice. Using genetic and pharmacologic approaches, we demonstrated a key role for miR-31 in mediating donor T-cell pathogenicity in cGVHD. Recipients of miR-31-deficient T cells displayed improved cutaneous and pulmonary cGVHD. Deficiency of miR-31 reduced T-cell expansion and T helper 17 (Th17) cell differentiation but increased generation and function of regulatory T cells (Tregs). MiR-31 facilitated neuropilin-1 downregulation, Foxp3 loss, and interferon-γ production in alloantigen-induced Tregs. Mechanistically, miR-31 was required for hypoxia-inducible factor 1α (HIF1α) upregulation in allogeneic T cells. Therefore, miR-31-deficient CD4 T cells displayed impaired activation, survival, Th17 cell differentiation, and glycolytic metabolism under hypoxia. Upregulation of factor-inhibiting HIF1, a direct target of miR-31, in miR-31-deficient T cells was essential for attenuating T-cell pathogenicity. However, miR-31-deficient CD8 T cells maintained intact glucose metabolism, cytolytic activity, and graft-versus-leukemia response. Importantly, systemic administration of a specific inhibitor of miR-31 effectively reduced donor T-cell expansion, improved Treg generation, and attenuated cGVHD. Taken together, miR-31 is a key driver for T-cell pathogenicity in cGVHD but not for antileukemia activity. MiR-31 is essential in driving cGVHD pathogenesis and represents a novel potential therapeutic target for controlling cGVHD.


Assuntos
Doença Enxerto-Hospedeiro , Transplante de Células-Tronco Hematopoéticas , MicroRNAs , Animais , Doença Enxerto-Hospedeiro/patologia , Transplante de Células-Tronco Hematopoéticas/efeitos adversos , Hipóxia , Camundongos , Camundongos Knockout , MicroRNAs/genética
5.
JCI Insight ; 6(3)2021 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-33554953

RESUMO

Graft-versus-host disease (GVHD) is a pathological process caused by an exaggerated donor lymphocyte response to host antigens after allogeneic hematopoietic cell transplantation (allo-HCT). Donor T cells undergo extensive clonal expansion and differentiation, which culminate in damage to recipient target organs. Damage to the gastrointestinal tract is a main contributor to morbidity and mortality. The loss of diversity among intestinal bacteria caused by pretransplant conditioning regimens leads to an outgrowth of opportunistic pathogens and exacerbated GVHD after allo-HCT. Using murine models of allo-HCT, we found that an increase of Bacteroides in the intestinal microbiota of the recipients was associated with reduced GVHD in mice given fecal microbial transplantation. Administration of Bacteroides fragilis through oral gavage increased gut microbiota diversity and beneficial commensal bacteria and significantly ameliorated acute and chronic GVHD development. Preservation of gut integrity following B. fragilis exposure was likely attributed to increased short chain fatty acids, IL-22, and regulatory T cells, which in turn improved gut tight junction integrity and reduced inflammatory cytokine production of pathogenic T cells. The current study provides a proof of concept that a single strain of commensal bacteria can be a safe and effective means to protect gut integrity and ameliorate GVHD after allo-HCT.


Assuntos
Bacteroides fragilis/imunologia , Microbioma Gastrointestinal/imunologia , Doença Enxerto-Hospedeiro/prevenção & controle , Aloenxertos , Animais , Modelos Animais de Doenças , Transplante de Microbiota Fecal , Doença Enxerto-Hospedeiro/imunologia , Doença Enxerto-Hospedeiro/microbiologia , Efeito Enxerto vs Leucemia/imunologia , Transplante de Células-Tronco Hematopoéticas/efeitos adversos , Isoantígenos/imunologia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos DBA , Linfócitos T/imunologia , Células Tumorais Cultivadas
6.
Cell Mol Immunol ; 18(3): 632-643, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33500563

RESUMO

Stimulator of interferon genes (STING)-mediated innate immune activation plays a key role in tumor- and self-DNA-elicited antitumor immunity and autoimmunity. However, STING can also suppress tumor immunity and autoimmunity. STING signaling in host nonhematopoietic cells was reported to either protect against or promote graft-versus-host disease (GVHD), a major complication of allogeneic hematopoietic cell transplantation (allo-HCT). Host hematopoietic antigen-presenting cells (APCs) play key roles in donor T-cell priming during GVHD initiation. However, how STING regulates host hematopoietic APCs after allo-HCT remains unknown. We utilized murine models of allo-HCT to assess the role of STING in hematopoietic APCs. STING-deficient recipients developed more severe GVHD after major histocompatibility complex-mismatched allo-HCT. Using bone marrow chimeras, we found that STING deficiency in host hematopoietic cells was primarily responsible for exacerbating the disease. Furthermore, STING on host CD11c+ cells played a dominant role in suppressing allogeneic T-cell responses. Mechanistically, STING deficiency resulted in increased survival, activation, and function of APCs, including macrophages and dendritic cells. Consistently, constitutive activation of STING attenuated the survival, activation, and function of APCs isolated from STING V154M knock-in mice. STING-deficient APCs augmented donor T-cell expansion, chemokine receptor expression, and migration into intestinal tissues, resulting in accelerated/exacerbated GVHD. Using pharmacologic approaches, we demonstrated that systemic administration of a STING agonist (bis-(3'-5')-cyclic dimeric guanosine monophosphate) to recipient mice before transplantation significantly reduced GVHD mortality. In conclusion, we revealed a novel role of STING in APC activity that dictates T-cell allogeneic responses and validated STING as a potential therapeutic target for controlling GVHD after allo-HCT.


Assuntos
Células Apresentadoras de Antígenos/imunologia , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD8-Positivos/imunologia , Doença Enxerto-Hospedeiro/patologia , Transplante de Células-Tronco Hematopoéticas/efeitos adversos , Intestinos/patologia , Proteínas de Membrana/fisiologia , Animais , Feminino , Doença Enxerto-Hospedeiro/etiologia , Doença Enxerto-Hospedeiro/metabolismo , Intestinos/imunologia , Intestinos/metabolismo , Macrófagos/imunologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Transplante Homólogo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA