Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Brain Commun ; 6(2): fcae095, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38638148

RESUMO

Acral burning pain triggered by fever, thermal hyposensitivity and skin denervation are hallmarks of small fibre neuropathy in Fabry disease, a life-threatening X-linked lysosomal storage disorder. Variants in the gene encoding alpha-galactosidase A may lead to impaired enzyme activity with cellular accumulation of globotriaosylceramide. To study the underlying pathomechanism of Fabry-associated small fibre neuropathy, we generated a neuronal in vitro disease model using patient-derived induced pluripotent stem cells from three Fabry patients and one healthy control. We further generated an isogenic control line via gene editing. We subjected induced pluripotent stem cells to targeted peripheral neuronal differentiation and observed intra-lysosomal globotriaosylceramide accumulations in somas and neurites of Fabry sensory neurons using super-resolution microscopy. At functional level, patch-clamp analysis revealed a hyperpolarizing shift of voltage-gated sodium channel steady-state inactivation kinetics in isogenic control neurons compared with healthy control neurons (P < 0.001). Moreover, we demonstrate a drastic increase in Fabry sensory neuron calcium levels at 39°C mimicking clinical fever (P < 0.001). This pathophysiological phenotype was accompanied by thinning of neurite calibres in sensory neurons differentiated from induced pluripotent stem cells derived from Fabry patients compared with healthy control cells (P < 0.001). Linear-nonlinear cascade models fit to spiking responses revealed that Fabry cell lines exhibit altered single neuron encoding properties relative to control. We further observed mitochondrial aggregation at sphingolipid accumulations within Fabry sensory neurites utilizing a click chemistry approach together with mitochondrial dysmorphism compared with healthy control cells. We pioneer pilot insights into the cellular mechanisms contributing to pain, thermal hyposensitivity and denervation in Fabry small fibre neuropathy and pave the way for further mechanistic in vitro studies in Fabry disease and the development of novel treatment approaches.

2.
Nat Commun ; 14(1): 2999, 2023 05 24.
Artigo em Inglês | MEDLINE | ID: mdl-37225702

RESUMO

The primary somatosensory cortex (S1) is a hub for body sensation of both innocuous and noxious signals, yet its role in somatosensation versus pain is debated. Despite known contributions of S1 to sensory gain modulation, its causal involvement in subjective sensory experiences remains elusive. Here, in mouse S1, we reveal the involvement of cortical output neurons in layers 5 (L5) and 6 (L6) in the perception of innocuous and noxious somatosensory signals. We find that L6 activation can drive aversive hypersensitivity and spontaneous nocifensive behavior. Linking behavior to neuronal mechanisms, we find that L6 enhances thalamic somatosensory responses, and in parallel, strongly suppresses L5 neurons. Directly suppressing L5 reproduced the pronociceptive phenotype induced by L6 activation, suggesting an anti-nociceptive function for L5 output. Indeed, L5 activation reduced sensory sensitivity and reversed inflammatory allodynia. Together, these findings reveal a layer-specific and bidirectional role for S1 in modulating subjective sensory experiences.


Assuntos
Afeto , Córtex Somatossensorial , Animais , Camundongos , Hiperalgesia , Neurônios , Dor
3.
PLoS Biol ; 21(5): e3002126, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37205722

RESUMO

The superior colliculus (SC), a conserved midbrain node with extensive long-range connectivity throughout the brain, is a key structure for innate behaviors. Descending cortical pathways are increasingly recognized as central control points for SC-mediated behaviors, but how cortico-collicular pathways coordinate SC activity at the cellular level is poorly understood. Moreover, despite the known role of the SC as a multisensory integrator, the involvement of the SC in the somatosensory system is largely unexplored in comparison to its involvement in the visual and auditory systems. Here, we mapped the connectivity of the whisker-sensitive region of the SC in mice with trans-synaptic and intersectional tracing tools and in vivo electrophysiology. The results reveal a novel trans-collicular connectivity motif in which neurons in motor- and somatosensory cortices impinge onto the brainstem-SC-brainstem sensory-motor arc and onto SC-midbrain output pathways via only one synapse in the SC. Intersectional approaches and optogenetically assisted connectivity quantifications in vivo reveal convergence of motor and somatosensory cortical input on individual SC neurons, providing a new framework for sensory-motor integration in the SC. More than a third of the cortical recipient neurons in the whisker SC are GABAergic neurons, which include a hitherto unknown population of GABAergic projection neurons targeting thalamic nuclei and the zona incerta. These results pinpoint a whisker region in the SC of mice as a node for the integration of somatosensory and motor cortical signals via parallel excitatory and inhibitory trans-collicular pathways, which link cortical and subcortical whisker circuits for somato-motor integration.


Assuntos
Córtex Motor , Vibrissas , Camundongos , Animais , Vibrissas/fisiologia , Neurônios/fisiologia , Colículos Superiores/fisiologia , Córtex Motor/fisiologia , Encéfalo , Córtex Somatossensorial/fisiologia
4.
Gigascience ; 122022 12 28.
Artigo em Inglês | MEDLINE | ID: mdl-37401720

RESUMO

The importance of effective research data management (RDM) strategies to support the generation of Findable, Accessible, Interoperable, and Reusable (FAIR) neuroscience data grows with each advance in data acquisition techniques and research methods. To maximize the impact of diverse research strategies, multidisciplinary, large-scale neuroscience research consortia face a number of unsolved challenges in RDM. While open science principles are largely accepted, it is practically difficult for researchers to prioritize RDM over other pressing demands. The implementation of a coherent, executable RDM plan for consortia spanning animal, human, and clinical studies is becoming increasingly challenging. Here, we present an RDM strategy implemented for the Heidelberg Collaborative Research Consortium. Our consortium combines basic and clinical research in diverse populations (animals and humans) and produces highly heterogeneous and multimodal research data (e.g., neurophysiology, neuroimaging, genetics, behavior). We present a concrete strategy for initiating early-stage RDM and FAIR data generation for large-scale collaborative research consortia, with a focus on sustainable solutions that incentivize incremental RDM while respecting research-specific requirements.


Assuntos
Gerenciamento de Dados , Neuroimagem , Animais , Humanos , Pesquisadores
5.
Front Neural Circuits ; 15: 730211, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34566583

RESUMO

Large portions of the thalamus receive strong driving input from cortical layer 5 (L5) neurons but the role of this important pathway in cortical and thalamic computations is not well understood. L5-recipient "higher-order" thalamic regions participate in cortico-thalamo-cortical (CTC) circuits that are increasingly recognized to be (1) anatomically and functionally distinct from better-studied "first-order" CTC networks, and (2) integral to cortical activity related to learning and perception. Additionally, studies are beginning to elucidate the clinical relevance of these networks, as dysfunction across these pathways have been implicated in several pathological states. In this review, we highlight recent advances in understanding L5 CTC networks across sensory modalities and brain regions, particularly studies leveraging cell-type-specific tools that allow precise experimental access to L5 CTC circuits. We aim to provide a focused and accessible summary of the anatomical, physiological, and computational properties of L5-originating CTC networks, and outline their underappreciated contribution in pathology. We particularly seek to connect single-neuron and synaptic properties to network (dys)function and emerging theories of cortical computation, and highlight information processing in L5 CTC networks as a promising focus for computational studies.


Assuntos
Neurônios , Tálamo , Encéfalo , Vias Neurais
6.
Commun Biol ; 4(1): 709, 2021 06 10.
Artigo em Inglês | MEDLINE | ID: mdl-34112934

RESUMO

Diversity of cell-types that collectively shape the cortical microcircuit ensures the necessary computational richness to orchestrate a wide variety of behaviors. The information content embedded in spiking activity of identified cell-types remain unclear to a large extent. Here, we recorded spike responses upon whisker touch of anatomically identified excitatory cell-types in primary somatosensory cortex in naive, untrained rats. We find major differences across layers and cell-types. The temporal structure of spontaneous spiking contains high-frequency bursts (≥100 Hz) in all morphological cell-types but a significant increase upon whisker touch is restricted to layer L5 thick-tufted pyramids (L5tts) and thus provides a distinct neurophysiological signature. We find that whisker touch can also be decoded from L5tt bursting, but not from other cell-types. We observed high-frequency bursts in L5tts projecting to different subcortical regions, including thalamus, midbrain and brainstem. We conclude that bursts in L5tts allow accurate coding and decoding of exploratory whisker touch.


Assuntos
Ratos/fisiologia , Córtex Somatossensorial/fisiologia , Tato , Vibrissas/fisiologia , Potenciais de Ação , Animais , Masculino , Neurônios/fisiologia , Ratos Wistar
7.
Neuroscience ; 387: 58-71, 2018 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-28978414

RESUMO

The transmission of noxious stimuli from peripheral receptors to the cortex involves multiple central ascending pathways. While projections to areas in the brainstem and diencephalon are likely involved in mediating the immediate behavioral responses to pain, the assessment of the sensory and emotional/motivational components of pain are likely processed in parallel ascending pathways that relay in the thalamus on their way to the cerebral cortex. In this review we discuss experimental animal and human findings that support the view that a lateral thalamocortical pathway is involved in coding the sensory discriminative aspects of pain, while a medial thalamocortical pathway codes the emotional qualities of pain. In addition, we outline experimental animal and human evidence of functional, anatomical and biochemical alterations in thalamocortical circuits that may be responsible for altered thalamocortical rhythms and the persistent presence of pain following nervous system damage. Finally, we discuss advances in clinical and preclinical development of chronic pain treatments aimed at altering neural and glial function.


Assuntos
Córtex Cerebral/fisiologia , Dor Crônica/fisiopatologia , Manejo da Dor/métodos , Dor/fisiopatologia , Tálamo/fisiologia , Animais , Modelos Animais de Doenças , Humanos
8.
Proc Natl Acad Sci U S A ; 114(33): 8853-8858, 2017 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-28774955

RESUMO

Neurons in cortical layer 5B (L5B) connect the cortex to numerous subcortical areas. Possibly the best-studied L5B cortico-subcortical connection is that between L5B neurons in the rodent barrel cortex (BC) and the posterior medial nucleus of the thalamus (POm). However, the spatial organization of L5B giant boutons in the POm and other subcortical targets is not known, and therefore it is unclear if this descending pathway retains somatotopy, i.e., body map organization, a hallmark of the ascending somatosensory pathway. We investigated the organization of the descending L5B pathway from the BC by dual-color anterograde labeling. We reconstructed and quantified the bouton clouds originating from adjacent L5B columns in the BC in three dimensions. L5B cells target six nuclei in the anterior midbrain and thalamus, including the posterior thalamus, the zona incerta, and the anterior pretectum. The L5B subcortical innervation is target specific in terms of bouton numbers, density, and projection volume. Common to all target nuclei investigated here is the maintenance of projection topology from different barrel columns in the BC, albeit with target-specific precision. We estimated low cortico-subcortical convergence and divergence, demonstrating that the L5B corticothalamic pathway is sparse and highly parallelized. Finally, the spatial organization of boutons and whisker map organization revealed the subdivision of the posterior group of the thalamus into four subnuclei (anterior, lateral, medial, and posterior). In conclusion, corticofugal L5B neurons establish a widespread cortico-subcortical network via sparse and somatotopically organized parallel pathways.


Assuntos
Mesencéfalo , Rede Nervosa , Neurônios , Tálamo , Animais , Mesencéfalo/citologia , Mesencéfalo/fisiologia , Camundongos , Rede Nervosa/citologia , Rede Nervosa/fisiologia , Neurônios/citologia , Neurônios/fisiologia , Tálamo/citologia , Tálamo/fisiologia
9.
Cell Rep ; 19(6): 1130-1140, 2017 05 09.
Artigo em Inglês | MEDLINE | ID: mdl-28494863

RESUMO

High-frequency "burst" clusters of spikes are a generic output pattern of many neurons. While bursting is a ubiquitous computational feature of different nervous systems across animal species, the encoding of synaptic inputs by bursts is not well understood. We find that bursting neurons in the rodent thalamus employ "multiplexing" to differentially encode low- and high-frequency stimulus features associated with either T-type calcium "low-threshold" or fast sodium spiking events, respectively, and these events adapt differently. Thus, thalamic bursts encode disparate information in three channels: (1) burst size, (2) burst onset time, and (3) precise spike timing within bursts. Strikingly, this latter "intraburst" encoding channel shows millisecond-level feature selectivity and adapts across statistical contexts to maintain stable information encoded per spike. Consequently, calcium events both encode low-frequency stimuli and, in parallel, gate a transient window for high-frequency, adaptive stimulus encoding by sodium spike timing, allowing bursts to efficiently convey fine-scale temporal information.


Assuntos
Adaptação Fisiológica , Potenciais Sinápticos , Tálamo/fisiologia , Potenciais de Ação , Animais , Cálcio/metabolismo , Canais de Cálcio Tipo T/metabolismo , Feminino , Masculino , Camundongos , Neurônios/metabolismo , Neurônios/fisiologia , Ratos , Ratos Wistar , Sódio/metabolismo , Tálamo/citologia
10.
Cereb Cortex ; 26(8): 3461-75, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27178196

RESUMO

The cortex connects to the thalamus via extensive corticothalamic (CT) pathways, but their function in vivo is not well understood. We investigated "top-down" signaling from cortex to thalamus via the cortical layer 5B (L5B) to posterior medial nucleus (POm) pathway in the whisker system of the anesthetized mouse. While L5B CT inputs to POm are extremely strong in vitro, ongoing activity of L5 neurons in vivo might tonically depress these inputs and thereby block CT spike transfer. We find robust transfer of spikes from the cortex to the thalamus, mediated by few L5B-POm synapses. However, the gain of this pathway is not constant but instead is controlled by global cortical Up and Down states. We characterized in vivo CT spike transfer by analyzing unitary PSPs and found that a minority of PSPs drove POm spikes when CT gain peaked at the beginning of Up states. CT gain declined sharply during Up states due to frequency-dependent adaptation, resulting in periodic high gain-low gain oscillations. We estimate that POm neurons receive few (2-3) active L5B inputs. Thus, the L5B-POm pathway strongly amplifies the output of a few L5B neurons and locks thalamic POm sub-and suprathreshold activity to cortical L5B spiking.


Assuntos
Neurônios/fisiologia , Córtex Somatossensorial/fisiologia , Tálamo/fisiologia , Potenciais de Ação , Anestesia , Animais , Simulação por Computador , Potenciais Pós-Sinápticos Excitadores , Agonistas de Receptores de GABA-A/farmacologia , Camundongos Transgênicos , Microeletrodos , Modelos Neurológicos , Muscimol/farmacologia , Vias Neurais/citologia , Vias Neurais/fisiologia , Técnicas de Rastreamento Neuroanatômico , Neurônios/citologia , Optogenética , Córtex Somatossensorial/citologia , Córtex Somatossensorial/efeitos dos fármacos , Tálamo/citologia , Proteínas Vesiculares de Transporte de Aminoácidos Inibidores/genética , Proteínas Vesiculares de Transporte de Aminoácidos Inibidores/metabolismo , Vibrissas/inervação , Vibrissas/fisiologia
11.
Cereb Cortex ; 26(8): 3534-43, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27230219

RESUMO

Cortical layer 5B (L5B) thick-tufted pyramidal neurons have reliable responses to whisker stimulation in anesthetized rodents. These cells drive a corticothalamic pathway that evokes spikes in thalamic posterior medial nucleus (POm). While a subset of POm has been shown to integrate both cortical L5B and paralemniscal signals, the majority of POm neurons are suggested to receive driving input from L5B only. Here, we test this possibility by investigating the origin of whisker-evoked responses in POm and specifically the contribution of the L5B-POm pathway. We compare L5B spiking with POm spiking and subthreshold responses to whisker deflections in urethane anesthetized mice. We find that a subset of recorded POm neurons shows early (<50 ms) spike responses and early large EPSPs. In these neurons, the early large EPSPs matched L5B input criteria, were blocked by cortical inhibition, and also interacted with spontaneous Up state coupled large EPSPs. This result supports the view of POm subdivisions, one of which receives whisker signals predominantly via L5B neurons.


Assuntos
Células Piramidais/fisiologia , Córtex Somatossensorial/fisiologia , Tálamo/fisiologia , Percepção do Tato/fisiologia , Vibrissas/fisiologia , Potenciais de Ação , Animais , Potenciais Pós-Sinápticos Excitadores , Camundongos Transgênicos , Vias Neurais/citologia , Vias Neurais/fisiologia , Optogenética , Células Piramidais/citologia , Córtex Somatossensorial/citologia , Tálamo/citologia
12.
Cell Rep ; 14(2): 208-15, 2016 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-26748702

RESUMO

In the mammalian brain, thalamic signals reach the cortex via two major routes: primary and higher-order thalamocortical pathways. While primary thalamocortical nuclei transmit sensory signals from the periphery, the function of higher-order thalamocortical projections remains enigmatic, in particular their role in sensory processing in the cortex. Here, by optogenetically controlling the thalamocortical pathway from the higher-order posteromedial thalamic nucleus (POm) during whisker stimulation, we demonstrate the integration of the two thalamocortical streams by single pyramidal neurons in layer 5 (L5) of the mouse barrel cortex under anesthesia. We report that POm input mainly enhances sub- and suprathreshold activity via net depolarization. Sensory enhancement is accompanied by prolongation of cortical responses over long (800-ms) periods after whisker stimulation. Thus, POm amplifies and temporally sustains cortical sensory signals, possibly serving to accentuate highly relevant sensory information.


Assuntos
Córtex Cerebral/fisiologia , Neurônios/fisiologia , Córtex Somatossensorial/metabolismo , Tálamo/metabolismo , Animais , Camundongos
13.
PLoS Comput Biol ; 10(12): e1003962, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25474701

RESUMO

Diverse ion channels and their dynamics endow single neurons with complex biophysical properties. These properties determine the heterogeneity of cell types that make up the brain, as constituents of neural circuits tuned to perform highly specific computations. How do biophysical properties of single neurons impact network function? We study a set of biophysical properties that emerge in cortical neurons during the first week of development, eventually allowing these neurons to adaptively scale the gain of their response to the amplitude of the fluctuations they encounter. During the same time period, these same neurons participate in large-scale waves of spontaneously generated electrical activity. We investigate the potential role of experimentally observed changes in intrinsic neuronal properties in determining the ability of cortical networks to propagate waves of activity. We show that such changes can strongly affect the ability of multi-layered feedforward networks to represent and transmit information on multiple timescales. With properties modeled on those observed at early stages of development, neurons are relatively insensitive to rapid fluctuations and tend to fire synchronously in response to wave-like events of large amplitude. Following developmental changes in voltage-dependent conductances, these same neurons become efficient encoders of fast input fluctuations over few layers, but lose the ability to transmit slower, population-wide input variations across many layers. Depending on the neurons' intrinsic properties, noise plays different roles in modulating neuronal input-output curves, which can dramatically impact network transmission. The developmental change in intrinsic properties supports a transformation of a networks function from the propagation of network-wide information to one in which computations are scaled to local activity. This work underscores the significance of simple changes in conductance parameters in governing how neurons represent and propagate information, and suggests a role for background synaptic noise in switching the mode of information transmission.


Assuntos
Modelos Neurológicos , Rede Nervosa/fisiologia , Neurônios/fisiologia , Transmissão Sináptica/fisiologia , Potenciais de Ação/fisiologia , Animais , Córtex Cerebral/citologia , Biologia Computacional , Canais Iônicos/metabolismo , Neurônios/citologia , Ratos
14.
J Comput Neurosci ; 37(3): 459-80, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24990803

RESUMO

The linear-nonlinear cascade model (LN model) has proven very useful in representing a neural system's encoding properties, but has proven less successful in reproducing the firing patterns of individual neurons whose behavior is strongly dependent on prior firing history. While the cell's behavior can still usefully be considered as feature detection acting on a fluctuating input, some of the coding capacity of the cell is taken up by the increased firing rate due to a constant "driving" direct current (DC) stimulus. Furthermore, both the DC input and the post-spike refractory period generate regular firing, reducing the spike-timing entropy available for encoding time-varying fluctuations. In this paper, we address these issues, focusing on the example of motoneurons in which an afterhyperpolarization (AHP) current plays a dominant role regularizing firing behavior. We explore the accuracy and generalizability of several alternative models for single neurons under changes in DC and variance of the stimulus input. We use a motoneuron simulation to compare coding models in neurons with and without the AHP current. Finally, we quantify the tradeoff between instantaneously encoding information about fluctuations and about the DC.


Assuntos
Potenciais de Ação/fisiologia , Modelos Neurológicos , Neurônios/fisiologia , Animais , Biofísica , Feminino , Técnicas In Vitro , Masculino , Dinâmica não Linear , Técnicas de Patch-Clamp , Ratos , Ratos Sprague-Dawley
15.
Proc Natl Acad Sci U S A ; 111(18): 6798-803, 2014 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-24748112

RESUMO

A major synaptic input to the thalamus originates from neurons in cortical layer 6 (L6); however, the function of this cortico-thalamic pathway during sensory processing is not well understood. In the mouse whisker system, we found that optogenetic stimulation of L6 in vivo results in a mixture of hyperpolarization and depolarization in the thalamic target neurons. The hyperpolarization was transient, and for longer L6 activation (>200 ms), thalamic neurons reached a depolarized resting membrane potential which affected key features of thalamic sensory processing. Most importantly, L6 stimulation reduced the adaptation of thalamic responses to repetitive whisker stimulation, thereby allowing thalamic neurons to relay higher frequencies of sensory input. Furthermore, L6 controlled the thalamic response mode by shifting thalamo-cortical transmission from bursting to single spiking. Analysis of intracellular sensory responses suggests that L6 impacts these thalamic properties by controlling the resting membrane potential and the availability of the transient calcium current IT, a hallmark of thalamic excitability. In summary, L6 input to the thalamus can shape both the overall gain and the temporal dynamics of sensory responses that reach the cortex.


Assuntos
Córtex Cerebral/fisiologia , Tálamo/fisiologia , Potenciais de Ação , Adaptação Fisiológica , Vias Aferentes/fisiologia , Animais , Sinalização do Cálcio , Feminino , Masculino , Potenciais da Membrana , Camundongos , Optogenética/métodos , Estimulação Física , Células Receptoras Sensoriais/fisiologia , Vibrissas/inervação
16.
Cereb Cortex ; 24(12): 3167-79, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23825316

RESUMO

Ascending and descending information is relayed through the thalamus via strong, "driver" pathways. According to our current knowledge, different driver pathways are organized in parallel streams and do not interact at the thalamic level. Using an electron microscopic approach combined with optogenetics and in vivo physiology, we examined whether driver inputs arising from different sources can interact at single thalamocortical cells in the rodent somatosensory thalamus (nucleus posterior, POm). Both the anatomical and the physiological data demonstrated that ascending driver inputs from the brainstem and descending driver inputs from cortical layer 5 pyramidal neurons converge and interact on single thalamocortical neurons in POm. Both individual pathways displayed driver properties, but they interacted synergistically in a time-dependent manner and when co-activated, supralinearly increased the output of thalamus. As a consequence, thalamocortical neurons reported the relative timing between sensory events and ongoing cortical activity. We conclude that thalamocortical neurons can receive 2 powerful inputs of different origin, rather than only a single one as previously suggested. This allows thalamocortical neurons to integrate raw sensory information with powerful cortical signals and transfer the integrated activity back to cortical networks.


Assuntos
Córtex Cerebral/citologia , Vias Neurais/fisiologia , Neurônios/fisiologia , Sinapses/metabolismo , Tálamo/citologia , Animais , Biotina/análogos & derivados , Channelrhodopsins , Dextranos , Potenciais Pós-Sinápticos Excitadores/fisiologia , Lateralidade Funcional , Masculino , Potenciais da Membrana/fisiologia , Camundongos , Camundongos Transgênicos , Microscopia Eletrônica de Transmissão , Neurônios/ultraestrutura , Técnicas de Patch-Clamp , Fito-Hemaglutininas , Ratos , Ratos Wistar , Sinapses/ultraestrutura , Proteína Vesicular 2 de Transporte de Glutamato/metabolismo
17.
J Neurosci ; 33(30): 12154-70, 2013 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-23884925

RESUMO

Adaptation is a fundamental computational motif in neural processing. To maintain stable perception in the face of rapidly shifting input, neural systems must extract relevant information from background fluctuations under many different contexts. Many neural systems are able to adjust their input-output properties such that an input's ability to trigger a response depends on the size of that input relative to its local statistical context. This "gain-scaling" strategy has been shown to be an efficient coding strategy. We report here that this property emerges during early development as an intrinsic property of single neurons in mouse sensorimotor cortex, coinciding with the disappearance of spontaneous waves of network activity, and can be modulated by changing the balance of spike-generating currents. Simultaneously, developing neurons move toward a common intrinsic operating point and a stable ratio of spike-generating currents. This developmental trajectory occurs in the absence of sensory input or spontaneous network activity. Through a combination of electrophysiology and modeling, we demonstrate that developing cortical neurons develop the ability to perform nearly perfect gain scaling by virtue of the maturing spike-generating currents alone. We use reduced single neuron models to identify the conditions for this property to hold.


Assuntos
Potenciais de Ação/fisiologia , Modelos Neurológicos , Neurônios/fisiologia , Córtex Somatossensorial/citologia , Animais , Feminino , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Rede Nervosa/citologia , Rede Nervosa/embriologia , Rede Nervosa/fisiologia , Técnicas de Cultura de Órgãos , Técnicas de Patch-Clamp , Córtex Somatossensorial/embriologia , Córtex Somatossensorial/fisiologia , Sinapses/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA