Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Neuroimage ; 205: 116278, 2020 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-31614221

RESUMO

Preclinical applications of resting-state functional magnetic resonance imaging (rsfMRI) offer the possibility to non-invasively probe whole-brain network dynamics and to investigate the determinants of altered network signatures observed in human studies. Mouse rsfMRI has been increasingly adopted by numerous laboratories worldwide. Here we describe a multi-centre comparison of 17 mouse rsfMRI datasets via a common image processing and analysis pipeline. Despite prominent cross-laboratory differences in equipment and imaging procedures, we report the reproducible identification of several large-scale resting-state networks (RSN), including a mouse default-mode network, in the majority of datasets. A combination of factors was associated with enhanced reproducibility in functional connectivity parameter estimation, including animal handling procedures and equipment performance. RSN spatial specificity was enhanced in datasets acquired at higher field strength, with cryoprobes, in ventilated animals, and under medetomidine-isoflurane combination sedation. Our work describes a set of representative RSNs in the mouse brain and highlights key experimental parameters that can critically guide the design and analysis of future rodent rsfMRI investigations.


Assuntos
Encéfalo/fisiologia , Conectoma/métodos , Processamento de Imagem Assistida por Computador/métodos , Imageamento por Ressonância Magnética/métodos , Rede Nervosa/fisiologia , Animais , Encéfalo/diagnóstico por imagem , Conectoma/normas , Feminino , Processamento de Imagem Assistida por Computador/normas , Imageamento por Ressonância Magnética/normas , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Rede Nervosa/diagnóstico por imagem , Reprodutibilidade dos Testes
2.
Front Psychiatry ; 9: 643, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30559685

RESUMO

Mu opioid receptor (MOR) activation facilitates reward processing and reduces pain, and brain networks underlying these effects are under intense investigation. Mice lacking the MOR gene (MOR KO mice) show lower drug and social reward, enhanced pain sensitivity and altered emotional responses. Our previous neuroimaging analysis using Resting-state (Rs) functional Magnetic Resonance Imaging (fMRI) showed significant alterations of functional connectivity (FC) within reward/aversion networks in these mice, in agreement with their behavioral deficits. Here we further used a structural MRI approach to determine whether volumetric alterations also occur in MOR KO mice. We acquired anatomical images using a 7-Tesla MRI scanner and measured deformation-based morphometry (DBM) for each voxel in subjects from MOR KO and control groups. Our analysis shows marked anatomical differences in mutant animals. We observed both local volumetric contraction (striatum, nucleus accumbens, bed nucleus of the stria terminalis, hippocampus, hypothalamus and periacqueducal gray) and expansion (prefrontal cortex, amygdala, habenula, and periacqueducal gray) at voxel level. Volumetric modifications occurred mainly in MOR-enriched regions and across reward/aversion centers, consistent with our prior FC findings. Specifically, several regions with volume differences corresponded to components showing highest FC changes in our previous Rs-fMRI study, suggesting a possible function-structure relationship in MOR KO-related brain differences. In conclusion, both Rs-fMRI and volumetric MRI in live MOR KO mice concur to disclose functional and structural whole-brain level mechanisms that likely drive MOR-controlled behaviors in animals, and may translate to MOR-associated endophenotypes or disease in humans.

3.
Dis Model Mech ; 11(9)2018 09 27.
Artigo em Inglês | MEDLINE | ID: mdl-30115750

RESUMO

Growing evidence supports the implication of DYRK1A in the development of cognitive deficits seen in Down syndrome (DS) and Alzheimer's disease (AD). We here demonstrate that pharmacological inhibition of brain DYRK1A is able to correct recognition memory deficits in three DS mouse models with increasing genetic complexity [Tg(Dyrk1a), Ts65Dn, Dp1Yey], all expressing an extra copy of Dyrk1a Overexpressed DYRK1A accumulates in the cytoplasm and at the synapse. Treatment of the three DS models with the pharmacological DYRK1A inhibitor leucettine L41 leads to normalization of DYRK1A activity and corrects the novel object cognitive impairment observed in these models. Brain functional magnetic resonance imaging reveals that this cognitive improvement is paralleled by functional connectivity remodelling of core brain areas involved in learning/memory processes. The impact of Dyrk1a trisomy and L41 treatment on brain phosphoproteins was investigated by a quantitative phosphoproteomics method, revealing the implication of synaptic (synapsin 1) and cytoskeletal components involved in synaptic response and axonal organization. These results encourage the development of DYRK1A inhibitors as drug candidates to treat cognitive deficits associated with DS and AD.


Assuntos
Disfunção Cognitiva/complicações , Disfunção Cognitiva/tratamento farmacológico , Dioxóis/farmacologia , Dioxóis/uso terapêutico , Síndrome de Down/complicações , Imidazóis/farmacologia , Imidazóis/uso terapêutico , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Proteínas Tirosina Quinases/antagonistas & inibidores , Sequência de Aminoácidos , Animais , Biocatálise , Encéfalo/efeitos dos fármacos , Encéfalo/patologia , Encéfalo/fisiopatologia , Disfunção Cognitiva/patologia , Citoplasma/metabolismo , Citoesqueleto/efeitos dos fármacos , Citoesqueleto/metabolismo , Dioxóis/química , Modelos Animais de Doenças , Síndrome de Down/patologia , Imidazóis/química , Imageamento por Ressonância Magnética , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Rede Nervosa/efeitos dos fármacos , Rede Nervosa/fisiopatologia , Fosforilação , Ligação Proteica/efeitos dos fármacos , Inibidores de Proteínas Quinases/química , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Tirosina Quinases/genética , Proteínas Tirosina Quinases/metabolismo , Proteômica , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Sinapses/efeitos dos fármacos , Sinapses/metabolismo , Sinapsinas/química , Sinapsinas/metabolismo , Quinases Dyrk
4.
Brain Connect ; 7(8): 526-540, 2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-28882062

RESUMO

Recent studies have demonstrated that orchestrated gene activity and expression support synchronous activity of brain networks. However, there is a paucity of information on the consequences of single gene function on overall brain functional organization and connectivity and how this translates at the behavioral level. In this study, we combined mouse mutagenesis with functional and structural magnetic resonance imaging (MRI) to determine whether targeted inactivation of a single gene would modify whole-brain connectivity in live animals. The targeted gene encodes GPR88 (G protein-coupled receptor 88), an orphan G protein-coupled receptor enriched in the striatum and previously linked to behavioral traits relevant to neuropsychiatric disorders. Connectivity analysis of Gpr88-deficient mice revealed extensive remodeling of intracortical and cortico-subcortical networks. Most prominent modifications were observed at the level of retrosplenial cortex connectivity, central to the default mode network (DMN) whose alteration is considered a hallmark of many psychiatric conditions. Next, somatosensory and motor cortical networks were most affected. These modifications directly relate to sensorimotor gating deficiency reported in mutant animals and also likely underlie their hyperactivity phenotype. Finally, we identified alterations within hippocampal and dorsal striatum functional connectivity, most relevant to a specific learning deficit that we previously reported in Gpr88-/- animals. In addition, amygdala connectivity with cortex and striatum was weakened, perhaps underlying the risk-taking behavior of these animals. This is the first evidence demonstrating that GPR88 activity shapes the mouse brain functional and structural connectome. The concordance between connectivity alterations and behavior deficits observed in Gpr88-deficient mice suggests a role for GPR88 in brain communication.


Assuntos
Encéfalo/diagnóstico por imagem , Conectoma , Receptores Acoplados a Proteínas G/deficiência , Tonsila do Cerebelo/fisiopatologia , Animais , Comportamento Animal , Encéfalo/fisiopatologia , Mapeamento Encefálico , Imagem de Tensor de Difusão , Hipocampo/fisiopatologia , Processamento de Imagem Assistida por Computador , Imageamento por Ressonância Magnética , Masculino , Camundongos , Camundongos Knockout , Córtex Motor/fisiopatologia , Receptores Acoplados a Proteínas G/genética , Córtex Somatossensorial/fisiopatologia
5.
Biol Psychiatry ; 81(9): 778-788, 2017 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-28185645

RESUMO

BACKGROUND: Mu opioid receptors (MORs) are central to pain control, drug reward, and addictive behaviors, but underlying circuit mechanisms have been poorly explored by genetic approaches. Here we investigate the contribution of MORs expressed in gamma-aminobutyric acidergic forebrain neurons to major biological effects of opiates, and also challenge the canonical disinhibition model of opiate reward. METHODS: We used Dlx5/6-mediated recombination to create conditional Oprm1 mice in gamma-aminobutyric acidergic forebrain neurons. We characterized the genetic deletion by histology, electrophysiology, and microdialysis; probed neuronal activation by c-Fos immunohistochemistry and resting-state functional magnetic resonance imaging; and investigated main behavioral responses to opiates, including motivation to obtain heroin and palatable food. RESULTS: Mutant mice showed MOR transcript deletion mainly in the striatum. In the ventral tegmental area, local MOR activity was intact, and reduced activity was only observed at the level of striatonigral afferents. Heroin-induced neuronal activation was modified at both sites, and whole-brain functional networks were altered in live animals. Morphine analgesia was not altered, and neither was physical dependence to chronic morphine. In contrast, locomotor effects of heroin were abolished, and heroin-induced catalepsy was increased. Place preference to heroin was not modified, but remarkably, motivation to obtain heroin and palatable food was enhanced in operant self-administration procedures. CONCLUSIONS: Our study reveals dissociable MOR functions across mesocorticolimbic networks. Thus, beyond a well-established role in reward processing, operating at the level of local ventral tegmental area neurons, MORs also moderate motivation for appetitive stimuli within forebrain circuits that drive motivated behaviors.


Assuntos
Comportamento Alimentar/fisiologia , Neurônios GABAérgicos/fisiologia , Heroína/administração & dosagem , Motivação/fisiologia , Entorpecentes/administração & dosagem , Prosencéfalo/fisiologia , Receptores Opioides mu/fisiologia , Animais , Condicionamento Clássico/efeitos dos fármacos , Condicionamento Clássico/fisiologia , Corpo Estriado/efeitos dos fármacos , Corpo Estriado/metabolismo , Corpo Estriado/fisiologia , Feminino , Neurônios GABAérgicos/metabolismo , Potenciais Pós-Sinápticos Inibidores/efeitos dos fármacos , Masculino , Camundongos , Camundongos Knockout , Morfina/administração & dosagem , Motivação/efeitos dos fármacos , Vias Neurais/fisiologia , Prosencéfalo/efeitos dos fármacos , Prosencéfalo/metabolismo , Receptores Opioides mu/genética , Área Tegmentar Ventral/efeitos dos fármacos , Área Tegmentar Ventral/fisiologia
6.
Neuroimage ; 146: 1-18, 2017 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-27845252

RESUMO

Connectomics of brain disorders seeks to reveal how altered brain function emerges from the architecture of cerebral networks; however the causal impact of targeted cellular damage on the whole brain functional and structural connectivity remains unknown. In the central nervous system, demyelination is typically the consequence of an insult targeted at the oligodendrocytes, the cells forming and maintaining the myelin. This triggered perturbation generates cascades of pathological events that most likely alter the brain connectome. Here we induced oligodendrocyte death and subsequent demyelinating pathology via cuprizone treatment in mice and combining mouse brain resting state functional Magnetic Resonance Imaging and diffusion tractography we established functional and structural pathology-to-network signatures. We demonstrated that demyelinated brain fundamentally reorganizes its intrinsic functional connectivity paralleled by widespread damage of the structural scaffolding. We evidenced default mode-like network as core target of demyelination-induced connectivity modulations and hippocampus as the area with strongest connectional perturbations.


Assuntos
Encéfalo/patologia , Encéfalo/fisiopatologia , Conectoma , Doenças Desmielinizantes/patologia , Doenças Desmielinizantes/fisiopatologia , Animais , Cuprizona , Doenças Desmielinizantes/induzido quimicamente , Imagem de Tensor de Difusão , Modelos Animais de Doenças , Feminino , Imageamento por Ressonância Magnética , Camundongos Endogâmicos C57BL , Vias Neurais/patologia , Vias Neurais/fisiopatologia
7.
Proc Natl Acad Sci U S A ; 113(41): 11603-11608, 2016 10 11.
Artigo em Inglês | MEDLINE | ID: mdl-27671662

RESUMO

Connectome genetics seeks to uncover how genetic factors shape brain functional connectivity; however, the causal impact of a single gene's activity on whole-brain networks remains unknown. We tested whether the sole targeted deletion of the mu opioid receptor gene (Oprm1) alters the brain connectome in living mice. Hypothesis-free analysis of combined resting-state fMRI diffusion tractography showed pronounced modifications of functional connectivity with only minor changes in structural pathways. Fine-grained resting-state fMRI mapping, graph theory, and intergroup comparison revealed Oprm1-specific hubs and captured a unique Oprm1 gene-to-network signature. Strongest perturbations occurred in connectional patterns of pain/aversion-related nodes, including the mu receptor-enriched habenula node. Our data demonstrate that the main receptor for morphine predominantly shapes the so-called reward/aversion circuitry, with major influence on negative affect centers.


Assuntos
Encéfalo/fisiologia , Conectoma , Deleção de Genes , Receptores Opioides mu/genética , Recompensa , Animais , Mapeamento Encefálico/métodos , Conectoma/métodos , Imagem de Tensor de Difusão , Genótipo , Imageamento por Ressonância Magnética , Masculino , Camundongos , Modelos Neurológicos , Receptores Opioides mu/metabolismo
8.
Neuroimage ; 96: 203-15, 2014 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-24718287

RESUMO

Understanding the intrinsic circuit-level functional organization of the brain has benefited tremendously from the advent of resting-state fMRI (rsfMRI). In humans, resting-state functional network has been consistently mapped and its alterations have been shown to correlate with symptomatology of various neurological or psychiatric disorders. To date, deciphering the mouse brain functional connectivity (MBFC) with rsfMRI remains a largely underexplored research area, despite the plethora of human brain disorders that can be modeled in this specie. To pave the way from pre-clinical to clinical investigations we characterized here the intrinsic architecture of mouse brain functional circuitry, based on rsfMRI data acquired at 7T using the Cryoprobe technology. High-dimensional spatial group independent component analysis demonstrated fine-grained segregation of cortical and subcortical networks into functional clusters, overlapping with high specificity onto anatomical structures, down to single gray matter nuclei. These clusters, showing a high level of stability and reliability in their patterning, formed the input elements for computing the MBFC network using partial correlation and graph theory. Its topological architecture conserved the fundamental characteristics described for the human and rat brain, such as small-worldness and partitioning into functional modules. Our results additionally showed inter-modular interactions via "network hubs". Each major functional system (motor, somatosensory, limbic, visual, autonomic) was found to have representative hubs that might play an important input/output role and form a functional core for information integration. Moreover, the rostro-dorsal hippocampus formed the highest number of relevant connections with other brain areas, highlighting its importance as core structure for MBFC.


Assuntos
Encéfalo/fisiologia , Conectoma/métodos , Aumento da Imagem/métodos , Imageamento por Ressonância Magnética/métodos , Rede Nervosa/fisiologia , Descanso/fisiologia , Animais , Encéfalo/anatomia & histologia , Feminino , Interpretação de Imagem Assistida por Computador/métodos , Camundongos , Camundongos Endogâmicos C57BL , Rede Nervosa/anatomia & histologia , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA