Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Adv Sci (Weinh) ; 7(18): 2000486, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32999827

RESUMO

While the utility of circulating cell-free DNA (cfDNA) in cancer screening and early detection have recently been investigated by testing genetic and epigenetic alterations, here, an original approach by examining cfDNA quantitative and structural features is developed. First, the potential of cfDNA quantitative and structural parameters is independently demonstrated in cell culture, murine, and human plasma models. Subsequently, these variables are evaluated in a large retrospective cohort of 289 healthy individuals and 983 patients with various cancer types; after age resampling, this evaluation is done independently and the variables are combined using a machine learning approach. Implementation of a decision tree prediction model for the detection and classification of healthy and cancer patients shows unprecedented performance for 0, I, and II colorectal cancer stages (specificity, 0.89 and sensitivity, 0.72). Consequently, the methodological proof of concept of using both quantitative and structural biomarkers, and classification with a machine learning method are highlighted, as an efficient strategy for cancer screening. It is foreseen that the classification rate may even be improved by the addition of such biomarkers to fragmentomics, methylation, or the detection of genetic alterations. The optimization of such a multianalyte strategy with this machine learning method is therefore warranted.

2.
FASEB J ; 34(3): 3616-3630, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31957088

RESUMO

Mitochondria are considered as the power-generating units of the cell due to their key role in energy metabolism and cell signaling. However, mitochondrial components could be found in the extracellular space, as fragments or encapsulated in vesicles. In addition, this intact organelle has been recently reported to be released by platelets exclusively in specific conditions. Here, we demonstrate for the first time, that blood preparation with resting platelets, contains whole functional mitochondria in normal physiological state. Likewise, we show, that normal and tumor cultured cells are able to secrete their mitochondria. Using serial centrifugation or filtration followed by polymerase chain reaction-based methods, and Whole Genome Sequencing, we detect extracellular full-length mitochondrial DNA in particles over 0.22 µm holding specific mitochondrial membrane proteins. We identify these particles as intact cell-free mitochondria using fluorescence-activated cell sorting analysis, fluorescence microscopy, and transmission electron microscopy. Oxygen consumption analysis revealed that these mitochondria are respiratory competent. In view of previously described mitochondrial potential in intercellular transfer, this discovery could greatly widen the scope of cell-cell communication biology. Further steps should be developed to investigate the potential role of mitochondria as a signaling organelle outside the cell and to determine whether these circulating units could be relevant for early detection and prognosis of various diseases.


Assuntos
DNA Mitocondrial/genética , Mitocôndrias/metabolismo , Western Blotting , Linhagem Celular Tumoral , Genoma Mitocondrial/genética , Humanos , Cinética
3.
Sci Rep ; 9(1): 5220, 2019 03 26.
Artigo em Inglês | MEDLINE | ID: mdl-30914716

RESUMO

To our knowledge, this is the first comprehensive study on the influence of several pre-analytical and demographic parameters that could be a source of variability in the quantification of nuclear and mitochondrial circulating DNA (NcirDNA and McirDNA). We report data from a total of 222 subjects, 104 healthy individuals and 118 metastatic colorectal cancer (mCRC) patients. Approximately 50,000 and 3,000-fold more mitochondrial than nuclear genome copies were found in the plasma of healthy individuals and mCRC patients, respectively. In healthy individuals, NcirDNA concentration was statistically influenced by age (p = 0.009) and gender (p = 0.048). Multivariate analysis with logistic regression specified that age over 47 years-old was predictive to have higher NcirDNA concentration (OR = 2.41; p = 0.033). McirDNA concentration was independent of age and gender in healthy individuals. In mCRC patients, NcirDNA and McirDNA levels were independent of age, gender, delay between food intake and blood collection, and plasma aspect, either with univariate or multivariate analysis. Nonetheless, ad hoc study suggested that menopause and blood collection time might have tendency to influence cirDNA quantification. In addition, high significant statistical differences were found between mCRC patients and healthy individuals for NcirDNA (p < 0.0001), McirDNA (p < 0.0001) and McirDNA/NcirDNA ratio (p < 0.0001). NcirDNA and McirDNA levels do not vary in the same way with regards to cancer vs healthy status, pre-analytical and demographic factors.


Assuntos
DNA Tumoral Circulante/sangue , Neoplasias Colorretais/sangue , DNA Mitocondrial/sangue , Adulto , Feminino , Humanos , Masculino , Pessoa de Meia-Idade
4.
Clin Chem ; 65(5): 623-633, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30792266

RESUMO

Circulating cell-free DNA (cfDNA) isolated from blood has been identified as a potential biomarker in numerous fields, and has been the object of intensive research over the past decade, although its original discovery dates back 60 years. While it is already used routinely in commercial and clinical practice in oncology and prenatal testing, other potential applications have emerged, including for diabetes, cardiovascular diseases, organ transplantation, autoimmune diseases, sepsis, trauma, and sport management. As with the discovery and development of any biomarker, preanalytical requirements and documentation are as important as analytical requirements. Except for the case of noninvasive prenatal testing and prenatal diagnosis, the implementation of cfDNA in a clinical setting remains limited because of the lack of standardization of cfDNA analysis. In particular, only a few attempts have been made to collect and pool scientific data on the relevant preanalytical factors, and no standard operating procedure has yet been set. For this report, we have performed a thorough and systematic search via MEDLINE® for relevant preanalytical variables and patient factors. These form the basis of the guidelines we propose for analyzing nuclear cfDNA.


Assuntos
Ácidos Nucleicos Livres/sangue , Biomarcadores/sangue , Ácidos Nucleicos Livres/normas , Humanos , Técnicas de Diagnóstico Molecular
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA