Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Cancer Immunol Res ; 12(5): 592-613, 2024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38393969

RESUMO

Solid tumors are dense three-dimensional (3D) multicellular structures that enable efficient receptor-ligand trans interactions via close cell-cell contact. Immunoglobulin-like transcript (ILT)2 and ILT4 are related immune-suppressive receptors that play a role in the inhibition of myeloid cells within the tumor microenvironment. The relative contribution of ILT2 and ILT4 to immune inhibition in the context of solid tumor tissue has not been fully explored. We present evidence that both ILT2 and ILT4 contribute to myeloid inhibition. We found that although ILT2 inhibits myeloid cell activation in the context of trans-engagement by MHC-I, ILT4 efficiently inhibits myeloid cells in the presence of either cis- or trans-engagement. In a 3D spheroid tumor model, dual ILT2/ILT4 blockade was required for the optimal activation of myeloid cells, including the secretion of CXCL9 and CCL5, upregulation of CD86 on dendritic cells, and downregulation of CD163 on macrophages. Humanized mouse tumor models showed increased immune activation and cytolytic T-cell activity with combined ILT2 and ILT4 blockade, including evidence of the generation of immune niches, which have been shown to correlate with clinical response to immune-checkpoint blockade. In a human tumor explant histoculture system, dual ILT2/ILT4 blockade increased CXCL9 secretion, downregulated CD163 expression, and increased the expression of M1 macrophage, IFNγ, and cytolytic T-cell gene signatures. Thus, we have revealed distinct contributions of ILT2 and ILT4 to myeloid cell biology and provide proof-of-concept data supporting the combined blockade of ILT2 and ILT4 to therapeutically induce optimal myeloid cell reprogramming in the tumor microenvironment.


Assuntos
Antígenos CD , Receptor B1 de Leucócitos Semelhante a Imunoglobulina , Glicoproteínas de Membrana , Células Mieloides , Receptores Imunológicos , Microambiente Tumoral , Receptores Imunológicos/metabolismo , Animais , Humanos , Camundongos , Microambiente Tumoral/imunologia , Receptor B1 de Leucócitos Semelhante a Imunoglobulina/metabolismo , Células Mieloides/imunologia , Células Mieloides/metabolismo , Glicoproteínas de Membrana/metabolismo , Linhagem Celular Tumoral , Neoplasias/imunologia , Neoplasias/metabolismo , Neoplasias/patologia , Células Supressoras Mieloides/imunologia , Células Supressoras Mieloides/metabolismo
2.
Sci Rep ; 10(1): 17407, 2020 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-33060620

RESUMO

Blood coagulation is regulated through protein-protein and protein-lipid interactions that occur at the sub-endothelium following vascular damage. Soluble clotting proteins bind to membrane components in a phosphatidylserine (PS) dependent manner to assemble multi-protein complexes that regulate clot formation; however, PS is of limited abundance physiologically. In this manuscript, we investigate synergy between PS and phosphatidylethanolamine (PE)-a lipid of much higher abundance naturally. Using a label-free, silicon photonic technology, we constructed arrays of Nanodiscs having variable lipid composition and probed the binding interactions of seven different clotting factors with GLA domains that have never been studied in tandem experiments before. The factors studied were prothrombin, activated factor VII, factor IX, factor X, activated protein C, protein S, and protein Z. Equilibrium dissociation constants (Kd) for each coagulation factor binding to Nanodiscs with unique compositions of PE and PS were determined. While all factors showed greater binding affinities in the presence of PS and PE, the most dramatic improvements in binding were observed when PS quantities were lowest. This demonstrates that synergy is effective in promoting coagulation factor binding under physiological lipid compositions, as opposed to the artificially high PS content probed in most in vitro activity studies.


Assuntos
Fatores de Coagulação Sanguínea/metabolismo , Nanoestruturas , Fosfatidiletanolaminas/metabolismo , Fosfatidilserinas/metabolismo , Sítios de Ligação , Humanos , Fótons , Silício/química
3.
J Biol Chem ; 292(39): 16249-16256, 2017 09 29.
Artigo em Inglês | MEDLINE | ID: mdl-28801460

RESUMO

Interactions of soluble proteins with the cell membrane are critical within the blood coagulation cascade. Of particular interest are the interactions of γ-carboxyglutamic acid-rich domain-containing clotting proteins with lipids. Variability among conventional analytical methods presents challenges for comparing clotting protein-lipid interactions. Most previous studies have investigated only a single clotting protein and lipid composition and have yielded widely different binding constants. Herein, we demonstrate that a combination of lipid bilayer nanodiscs and a multiplexed silicon photonic analysis technology enables high-throughput probing of many protein-lipid interactions among blood-clotting proteins. This approach allowed direct comparison of the binding constants of prothrombin, factor X, activated factor VII, and activated protein C to seven different binary lipid compositions. In a single experiment, the binding constants of one protein interacting with all lipid compositions were simultaneously determined. A simple surface regeneration then facilitated similar binding measurements for three other coagulation proteins. As expected, our results indicated that all proteins exhibit tighter binding (lower Kd ) as the proportion of anionic lipid increases. Interestingly, at high proportions of phosphatidylserine, the Kd values of all four proteins began to converge. We also found that although koff values for all four proteins followed trends similar to those observed for the Kd values, the variation among the proteins was much lower, indicating that much of the variation came from the kinetic binding (kon) of the proteins. These findings indicate that the combination of silicon photonic microring resonator arrays and nanodiscs enables rapid interrogation of biomolecular binding interactions at model cell membrane interfaces.


Assuntos
Fator VIIa/metabolismo , Fator X/metabolismo , Ácidos Fosfatídicos/metabolismo , Fosfatidilcolinas/metabolismo , Fosfatidilserinas/metabolismo , Proteína C/metabolismo , Protrombina/metabolismo , Fator VIIa/química , Fator VIIa/genética , Fator X/química , Ensaios de Triagem em Larga Escala , Humanos , Cinética , Bicamadas Lipídicas/química , Bicamadas Lipídicas/metabolismo , Nanoestruturas/química , Fenômenos Ópticos , Ácidos Fosfatídicos/química , Fosfatidilcolinas/química , Fosfatidilserinas/química , Análise Serial de Proteínas , Proteína C/química , Protrombina/química , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Silício/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA