RESUMO
In the past decade, human genetics research saw an acceleration of disease gene discovery and further dissection of the genetic architectures of many disorders. Much of this progress was enabled via data aggregation projects, collaborative data sharing among researchers, and the adoption of sophisticated and standardized bioinformatics analyses pipelines. In 2012, we launched the GENESIS platform, formerly known as GEM.app, with the aims to 1) empower clinical and basic researchers without bioinformatics expertise to analyze and explore genome level data and 2) facilitate the detection of novel pathogenic variation and novel disease genes by leveraging data aggregation and genetic matchmaking. The GENESIS database has grown to over 20,000 datasets from rare disease patients, which were provided by multiple academic research consortia and many individual investigators. Some of the largest global collections of genome-level data are available for Charcot-Marie-Tooth disease, hereditary spastic paraplegia, and cerebellar ataxia. A number of rare disease consortia and networks are archiving their data in this database. Over the past decade, more than 1500 scientists have registered and used this resource and published over 200 papers on gene and variant identifications, which garnered >6000 citations. GENESIS has supported >100 gene discoveries and contributed to approximately half of all gene identifications in the fields of inherited peripheral neuropathies and spastic paraplegia in this time frame. Many diagnostic odysseys of rare disease patients have been resolved. The concept of genomes-to-therapy has borne out for a number of such discoveries that let to rapid clinical trials and expedited natural history studies. This marks GENESIS as one of the most impactful data aggregation initiatives in rare monogenic diseases.
Assuntos
Bases de Dados Genéticas , Genômica , Humanos , Genômica/métodos , Bases de Dados Genéticas/tendências , Biologia Computacional/métodosRESUMO
DNA-based therapeutics have emerged as a revolutionary approach for addressing the treatment gap in rare inherited conditions by targeting the fundamental genetic causes of disease. Charcot-Marie-Tooth (CMT) disease, a group of inherited neuropathies, represents one of the most prevalent Mendelian disease groups in neurology and is characterized by diverse genetic etiology. Axonal forms of CMT, known as CMT2, are caused by dominant mutations in over 30 different genes which lead to degeneration of lower motor neuron axons. Recent advances in antisense oligonucleotide (ASO) therapeutics have shown promise in targeting neurodegenerative disorders. Here we elucidate pathomechanistic changes contributing to variant specific molecular phenotypes in CMT2E, caused by a single nucleotide substitution (p.N98S) in the neurofilament light chain gene (NEFL). We used a patient-derived pluripotent stem cell (iPSC)-induced motor neuron model, which recapitulates several cellular and biomarker phenotypes associated with CMT2E. Using an ASO treatment strategy targeting a heterozygous gain-of-function variant, we aimed to resolve molecular phenotypic changes observed in the CMT2E p.N98S subtype. To determine ASO therapeutic potential, we employed our treatment strategy in iPSC-derived motor neurons and used established as well as novel biomarkers of peripheral nervous system axonal degeneration. Our findings have demonstrated a significant decrease in clinically relevant biomarkers of axonal degeneration, presenting the first clinically viable genetic therapeutic for CMT2E. Similar strategies could be used to develop precision medicine approaches for otherwise untreatable gain of function inherited disorders.
RESUMO
Biallelic SORD mutations cause one of the most frequent forms of recessive hereditary neuropathy, estimated to affect â¼10 000 patients in North America and Europe alone. Pathogenic SORD loss-of-function changes in the encoded enzyme sorbitol dehydrogenase result in abnormally high sorbitol levels in cells and serum. How sorbitol accumulation leads to peripheral neuropathy remains to be elucidated. A reproducible animal model for SORD neuropathy is essential to illuminate the pathogenesis of SORD deficiency and for preclinical studies of potential therapies. Therefore, we have generated a Sord knockout (KO), Sord-/-, Sprague Dawley rat, to model the human disease and to investigate the pathophysiology underlying SORD deficiency. We have characterized the phenotype in these rats with a battery of behavioural tests as well as biochemical, physiological and comprehensive histological examinations. Sord-/- rats had remarkably increased levels of sorbitol in serum, CSF and peripheral nerve. Moreover, serum from Sord-/- rats contained significantly increased levels of neurofilament light chain, an established biomarker for axonal degeneration. Motor performance significantly declined in Sord-/- animals starting at â¼7 months of age. Gait analysis evaluated with video motion-tracking confirmed abnormal gait patterns in the hindlimbs. Motor nerve conduction velocities of the tibial nerves were slowed. Light and electron microscopy of the peripheral nervous system revealed degenerating myelinated axons, de- and remyelinated axons, and a likely pathognomonic finding-enlarged 'ballooned' myelin sheaths. These findings mainly affected myelinated motor axons; myelinated sensory axons were largely spared. In summary, Sord-/- rats develop a motor-predominant neuropathy that closely resembles the human phenotype. Our studies revealed novel significant aspects of SORD deficiency, and this model will lead to an improved understanding of the pathophysiology and the therapeutic options for SORD neuropathy.
Assuntos
Modelos Animais de Doenças , Animais , Feminino , Masculino , Ratos , L-Iditol 2-Desidrogenase/deficiência , L-Iditol 2-Desidrogenase/metabolismo , Condução Nervosa , Doenças do Sistema Nervoso Periférico/fisiopatologia , Doenças do Sistema Nervoso Periférico/patologia , Doenças do Sistema Nervoso Periférico/genética , Ratos Sprague-Dawley , Sorbitol/metabolismoRESUMO
Biallelic SORD mutations cause one of the most frequent forms of recessive hereditary neuropathy, estimated to affect approximately 10,000 patients in North America and Europe alone. Pathogenic SORD loss-of-function changes in the encoded enzyme sorbitol dehydrogenase result in abnormally high sorbitol levels in cells and serum. How sorbitol accumulation leads to peripheral neuropathy remains to be elucidated. A reproducible animal model for SORD neuropathy is essential to illuminate the pathogenesis of SORD deficiency and for preclinical studies of potential therapies. Therefore, we have generated a Sord knockout (KO), Sord -/- , Sprague Dawley rat, to model the human disease and to investigate the pathophysiology underlying SORD deficiency. We have characterized the phenotype in these rats with a battery of behavioral tests as well as biochemical, physiological, and comprehensive histological examinations. Sord -/- rats had remarkably increased levels of sorbitol in serum, cerebral spinal fluid (CSF), and peripheral nerve. Moreover, serum from Sord -/- rats contained significantly increased levels of neurofilament light chain, NfL, an established biomarker for axonal degeneration. Motor performance significantly declined in Sord -/- animals starting at â¼7 months of age. Gait analysis evaluated with video motion tracking confirmed abnormal gait patterns in the hindlimbs. Motor nerve conduction velocities of the tibial nerves were slowed. Light and electron microscopy of the peripheral nervous system revealed degenerating myelinated axons, de- and remyelinated axons, and a likely pathognomonic finding - enlarged "ballooned" myelin sheaths. These findings mainly affected myelinated motor axons; myelinated sensory axons were largely spared. In summary, Sord -/- rats develop a motor-predominant neuropathy that closely resembles the human phenotype. Our studies revealed novel significant aspects of SORD deficiency, and this model will lead to an improved understanding of the pathophysiology and the therapeutic options for SORD neuropathy.
RESUMO
The macrocyclic tetrapeptide CJ-15,208 (cyclo[Phe-D-Pro-Phe-Trp]) and its D-Trp isomer exhibit kappa opioid receptor (KOR) antagonism which prevents stress-induced reinstatement of extinguished cocaine-conditioned place preference. Here, we evaluated the effects of substitution of Trp and D-Trp on the peptides' opioid activity, antinociceptive tolerance, and the ability to prevent relapse to extinguished drug-CPP. Six analogs were synthesized using a combination of solid-phase peptide synthesis and cyclization in solution. The analogs were evaluated in vitro for opioid receptor affinity in radioligand competition binding assays, efficacy in the [35S]GTPγS assay, metabolic stability in mouse liver microsomes, and for opioid activity and selectivity in vivo in the mouse 55 °C warm-water tail-withdrawal assay. Potential liabilities of locomotor impairment, respiratory depression, acute tolerance, and conditioned place preference (CPP) were also assessed in vivo, and the ameliorating effect of analogs on the reinstatement of extinguished cocaine-place preference was assessed. Substitutions of other D-amino acids for D-Trp did not affect (or in one case increased) KOR affinity, while two of the three substitutions of an L-amino acid for Trp decreased KOR affinity. In contrast, all but one substitution increased mu opioid receptor (MOR) affinity in vitro. The metabolic stabilities of the analogs were similar to those of their respective parent peptides, with analogs containing a D-amino acid being much more rapidly metabolized than those containing an L-amino acid in this position. In vivo, CJ-15,208 analogs demonstrated antinociception, although potencies varied over an 80-fold range and the mediating opioid receptors differed by substitution. KOR antagonism was lost for all but the D-benzothienylalanine analog, and the 2'-naphthylalanine analog instead demonstrated significant delta opioid receptor (DOR) antagonism. Introduction of DOR antagonism coincided with reduced acute opioid antinociceptive tolerance and prevented stress-induced reinstatement of extinguished cocaine-CPP.
RESUMO
COQ7 encodes a hydroxylase responsible for the penultimate step of coenzyme Q10 (CoQ10) biosynthesis in mitochondria. CoQ10 is essential for multiple cellular functions, including mitochondrial oxidative phosphorylation, lipid metabolism, and reactive oxygen species homeostasis. Mutations in COQ7 have been previously associated with primary CoQ10 deficiency, a clinically heterogeneous multisystemic mitochondrial disorder. We identified COQ7 biallelic variants in nine families diagnosed with distal hereditary motor neuropathy with upper neuron involvement, expending the clinical phenotype associated with defects in this gene. A recurrent p.Met1? change was identified in five families from Brazil with evidence of a founder effect. Fibroblasts isolated from patients revealed a substantial depletion of COQ7 protein levels, indicating protein instability leading to loss of enzyme function. High-performance liquid chromatography assay showed that fibroblasts from patients had reduced levels of CoQ10, and abnormal accumulation of the biosynthetic precursor DMQ10. Accordingly, fibroblasts from patients displayed significantly decreased oxygen consumption rates in patients, suggesting mitochondrial respiration deficiency. Induced pluripotent stem cell-derived motor neurons from patient fibroblasts showed significantly increased levels of extracellular neurofilament light protein, indicating axonal degeneration. Our findings indicate a molecular pathway involving CoQ10 biosynthesis deficiency and mitochondrial dysfunction in patients with distal hereditary motor neuropathy. Further studies will be important to evaluate the potential benefits of CoQ10 supplementation in the clinical outcome of the disease.
Assuntos
Doenças Mitocondriais , Humanos , Mitocôndrias/genética , Mitocôndrias/metabolismo , Doenças Mitocondriais/metabolismo , Neurônios Motores/metabolismo , Mutação/genética , Ubiquinona/genéticaRESUMO
Mitochondria are essential for the health and viability of both motor and sensory neurons and their axons. Processes that disrupt their normal distribution and transport along axons will likely cause peripheral neuropathies. Similarly, mutations in mtDNA or nuclear encoded genes result in neuropathies that either stand alone or are part of multisystem disorders. This chapter focuses on the more common genetic forms and characteristic clinical phenotypes of "mitochondrial" peripheral neuropathies. We also explain how these various mitochondrial abnormalities cause peripheral neuropathy. In a patient with a neuropathy either due to a mutation in a nuclear or an mtDNA gene, clinical investigations aim to characterize the neuropathy and make an accurate diagnosis. In some patients, this may be relatively straightforward, where a clinical assessment and nerve conduction studies followed by genetic testing is all that is needed. In others, multiple investigations including a muscle biopsy, CNS imaging, CSF analysis, and a wide range of metabolic and genetic tests in blood and muscle may be needed to establish diagnosis.
Assuntos
Doença de Charcot-Marie-Tooth , Doenças Mitocondriais , Humanos , Doença de Charcot-Marie-Tooth/genética , Doenças Mitocondriais/genética , Mitocôndrias/genética , Axônios/patologia , DNA Mitocondrial , MutaçãoRESUMO
Lipid analysis at the molecular species level represents a valuable opportunity for clinical applications due to the essential roles that lipids play in metabolic health. However, a comprehensive and high-throughput lipid profiling remains challenging given the lipid structural complexity and exceptional diversity. Herein, we present an 'omic-scale targeted LC-MS/MS approach for the straightforward and high-throughput quantification of a broad panel of complex lipid species across 26 lipid (sub)classes. The workflow involves an automated single-step extraction with 2-propanol, followed by lipid analysis using hydrophilic interaction liquid chromatography in a dual-column setup coupled to tandem mass spectrometry with data acquisition in the timed-selective reaction monitoring mode (12 min total run time). The analysis pipeline consists of an initial screen of 1903 lipid species, followed by high-throughput quantification of robustly detected species. Lipid quantification is achieved by a single-point calibration with 75 isotopically labeled standards representative of different lipid classes, covering lipid species with diverse acyl/alkyl chain lengths and unsaturation degrees. When applied to human plasma, 795 lipid species were measured with median intra- and inter-day precisions of 8.5 and 10.9%, respectively, evaluated within a single and across multiple batches. The concentration ranges measured in NIST plasma were in accordance with the consensus intervals determined in previous ring-trials. Finally, to benchmark our workflow, we characterized NIST plasma materials with different clinical and ethnic backgrounds and analyzed a sub-set of sera (n = 81) from a clinically healthy elderly population. Our quantitative lipidomic platform allowed for a clear distinction between different NIST materials and revealed the sex-specificity of the serum lipidome, highlighting numerous statistically significant sex differences.
Assuntos
Lipídeos , Espectrometria de Massas em Tandem , Idoso , Feminino , Humanos , Masculino , Cromatografia Líquida , Espectrometria de Massas em Tandem/métodos , Lipídeos/análise , Plasma/química , Soro/químicaRESUMO
Between 2012 and 2014, 715 green coffee samples were gathered by Almacafé S.A. (Bogotá, Colombia) from 27 countries. These were analysed at the nuclear magnetic resonance (NMR) laboratory at Universidad del Valle (Cali, Colombia). Over 1000 methanolic coffee extracts were prepared and 4563 spectra were acquired in a fully automatic manner using a 400 MHz NMR spectrometer (Bruker Biospin, Germany). The dataset spans the variance that could be expected for an industrial application of origin monitoring, including samples from different harvest times, collected over several years, and processed by at least two distinct operators. The resulting 1D and 2D spectra can be used to develop and evaluate feature extraction methods, multivariate algorithms, and automation monitoring techniques. They can also be used as datasets for teaching, or as a reference for new studies of similar samples and approaches.
RESUMO
Despite the success of combined antiretroviral therapy (cART) in reducing viral load, a substantial portion of Human Immunodeficiency Virus (HIV)+ patients report chronic pain. The exact mechanism underlying this co-morbidity even with undetectable viral load remains unknown, but the transactivator of transcription (HIV-Tat) protein is of particular interest. Functional HIV-Tat protein is observed even in cerebrospinal fluid of patients who have an undetectable viral load. It is hypothesized that Tat protein exposure is sufficient to induce neuropathic pain-like manifestations via both activation of microglia and generation of oxidative stress. iTat mice conditionally expressed Tat(1-86) protein in the central nervous system upon daily administration of doxycycline (100 mg/kg/d, i.p., up to 14 days). The effect of HIV-Tat protein exposure on the well-being of the animal was assessed using sucrose-evoked grooming and acute nesting behavior for pain-depressed behaviors, and the development of hyperalgesia assessed with warm-water tail-withdrawal and von Frey assays for thermal hyperalgesia and mechanical allodynia, respectively. Tissue harvested at select time points was used to assess ex vivo alterations in oxidative stress, astrocytosis and microgliosis, and blood-brain barrier integrity with assays utilizing fluorescence-based indicators. Tat protein induced mild thermal hyperalgesia but robust mechanical allodynia starting after 4 days of exposure, reaching a nadir after 7 days. Changes in nociceptive processing were associated with reduced sucrose-evoked grooming behavior without altering acute nesting behavior, and in spinal cord dysregulated free radical generation as measured by DCF fluorescence intensity, altered immunohistochemical expression of the gliotic markers, Iba-1 and GFAP, and increased permeability of the blood-brain barrier to the small molecule fluorescent tracer, sodium fluorescein, in a time-dependent manner. Pretreatment with the anti-inflammatory, indomethacin (1 mg/kg/d, i.p.), the antioxidant, methylsulfonylmethane (100 mg/kg/d i.p.), or the immunomodulatory agent, dimethylfumarate (100 mg/kg/d p.o.) thirty minutes prior to daily injections of doxycycline (100 mg/kg/d i.p.) over 7 days significantly attenuated the development of Tat-induced mechanical allodynia. Collectively, the data suggests that even acute exposure to HIV-1 Tat protein at pathologically relevant levels is sufficient to produce select neurophysiological and behavioral manifestations of chronic pain consistent with that reported by HIV-positive patients.
Assuntos
Dor Crônica , Infecções por HIV , Humanos , Camundongos , Animais , Antioxidantes/farmacologia , HIV , Transativadores , Dor Crônica/tratamento farmacológico , Anti-Inflamatórios , Produtos do Gene tat , Infecções por HIV/tratamento farmacológico , SacaroseRESUMO
Hereditary transthyretin (TTR) amyloidosis (ATTRv) is an autosomal dominant, systemic disease transmitted by amyloidogenic mutations in the TTR gene. To prevent the otherwise fatal disease course, TTR stabilizers and mRNA silencing antisense drugs are currently approved treatment options. With 90% of the amyloidogenic protein produced by the liver, disease progression including polyneuropathy and cardiomyopathy, the two most prominent manifestations, can successfully be halted by hepatic drug targeting or-formerly-liver transplantation. Certain TTR variants, however, favor disease manifestations in the central nervous system (CNS) or eyes, which is mostly associated with TTR production in the choroid plexus and retina. These compartments cannot be sufficiently reached by any of the approved medications. From liver-transplanted patients, we have learned that with longer lifespans, such CNS manifestations become more relevant over time, even if the underlying TTR mutation is not primarily associated with such. Are we therefore creating a new phenotype? Prolonging life will most likely lead to a shift in the phenotypic spectrum, enabling manifestations like blindness, dementia, and cerebral hemorrhage to come out of the disease background. To overcome the first therapeutic limitation, the blood-brain barrier, we might be able to learn from other antisense drugs currently being used in research or even being approved for primary neurodegenerative CNS diseases like spinal muscular atrophy or Alzheimer's disease. But what effects will unselective CNS TTR knock-down have considering its role in neuroprotection? A potential approach to overcome this second limitiation might be allele-specific targeting, which is, however, still far from clinical trials. Ethical standpoints underline the need for seamless data collection to enable more evidence-based decisions and for thoughtful consenting in research and clinical practice. We conclude that the current advances in treating ATTRv amyloidosis have become a meaningful example for mechanism-based treatment. With its great success in improving patient life spans, we will still have to face new challenges including shifts in the phenotype spectrum and the ongoing need for improved treatment precision. Further investigation is needed to address these closed barriers and open questions.
RESUMO
[Figure: see text].
Assuntos
Autofagia , Proteína Beclina-1/farmacologia , Traumatismo por Reperfusão Miocárdica/metabolismo , Miócitos Cardíacos/metabolismo , Animais , Proteína 7 Relacionada à Autofagia/genética , Proteína 7 Relacionada à Autofagia/metabolismo , Proteína Beclina-1/uso terapêutico , Células Cultivadas , Camundongos , Camundongos Endogâmicos C57BL , Contração Miocárdica , Traumatismo por Reperfusão Miocárdica/tratamento farmacológico , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/fisiologia , Ratos , Ratos Sprague-Dawley , Espécies Reativas de Oxigênio/metabolismo , Proteínas Recombinantes/farmacologia , Proteínas Recombinantes/uso terapêuticoRESUMO
The liver-derived, circulating transport protein transthyretin (TTR) is the cause of systemic hereditary (ATTRv) and wild-type (ATTRwt) amyloidosis. TTR stabilization and knockdown are approved therapies to mitigate the otherwise lethal disease course. To date, the variety in phenotypic penetrance is not fully understood. This systematic review summarizes the current literature on TTR pathophysiology with its therapeutic implications. Tetramer dissociation is the rate-limiting step of amyloidogenesis. Besides destabilizing TTR mutations, other genetic (RBP4, APCS, AR, ATX2, C1q, C3) and external (extracellular matrix, Schwann cell interaction) factors influence the type of onset and organ tropism. The approved small molecule tafamidis stabilizes the tetramer and significantly decelerates the clinical course. By sequence-specific mRNA knockdown, the approved small interfering RNA (siRNA) patisiran and antisense oligonucleotide (ASO) inotersen both significantly reduce plasma TTR levels and improve neuropathy and quality of life compared to placebo. With enhanced hepatic targeting capabilities, GalNac-conjugated siRNA and ASOs have recently entered phase III clinical trials. Bivalent TTR stabilizers occupy both binding groves in vitro, but have not been tested in trials so far. Tolcapone is another stabilizer with the potential to cross the blood-brain barrier, but its half-life is short and liver failure a potential side effect. Amyloid-directed antibodies and substances like doxycycline aim at reducing the amyloid load, however, none of the yet developed antibodies has successfully passed clinical trials. ATTR-amyloidosis has become a model disease for pathophysiology-based treatment. Further understanding of disease mechanisms will help to overcome the remaining limitations, including application burden, side effects, and blood-brain barrier permeability.
Assuntos
Amiloidose Familiar/tratamento farmacológico , Amiloidose Familiar/genética , Pré-Albumina/efeitos dos fármacos , Amiloide/antagonistas & inibidores , Amiloide/biossíntese , Amiloide/genética , Amiloidose Familiar/fisiopatologia , Animais , Técnicas de Silenciamento de Genes , Humanos , Pré-Albumina/genéticaRESUMO
Expanding metabolome coverage to include complex lipids and polar metabolites is essential in the generation of well-founded hypotheses in biological assays. Traditionally, lipid extraction is performed by liquid-liquid extraction using either methyl-tert-butyl ether (MTBE) or chloroform, and polar metabolite extraction using methanol. Here, we evaluated the performance of single-step sample preparation methods for simultaneous extraction of the complex lipidome and polar metabolome from human plasma. The method performance was evaluated using high-coverage Hydrophilic Interaction Liquid Chromatography-ESI coupled to tandem mass spectrometry (HILIC-ESI-MS/MS) methodology targeting a panel of 1159 lipids and 374 polar metabolites. The criteria used for method evaluation comprised protein precipitation efficiency, and relative MS signal abundance and repeatability of detectable lipid and polar metabolites in human plasma. Among the tested methods, the isopropanol (IPA) and 1-butanol:methanol (BUME) mixtures were selected as the best compromises for the simultaneous extraction of complex lipids and polar metabolites, allowing for the detection of 584 lipid species and 116 polar metabolites. The extraction with IPA showed the greatest reproducibility with the highest number of lipid species detected with the coefficient of variation (CV) < 30%. Besides this difference, both IPA and BUME allowed for the high-throughput extraction and reproducible measurement of a large panel of complex lipids and polar metabolites, thus warranting their application in large-scale human population studies.
RESUMO
BACKGROUND: Burnout syndrome, from the sporting point of view, is the integration of both physical and emotional signs, caused by the high demands in competition. According to several studies, the prevalence of burnout syndrome is influenced by several factors that would lead to athlete's body image dissatisfaction. METHODS: The study design is cross-sectional analysis. The study sample was 352 athletes selected from the Universidad Peruana de Ciencias Aplicadas (UPC). The main variables of this study are the burnout syndrome; which was measured by Athlete Burnout Questionnaire (ABQ) and body image dissatisfaction, through thirteen Scale drawings contour figure Gardner. To find the association between body image dissatisfaction and burnout syndrome Poisson regression was used. RESULTS: Athletes with burnout syndrome have 1.08 times more likely having body image dissatisfaction with a value P=0.011 (95% CI: 1.02-1.15). It was also found that a sport collectively practiced is a protective factor for Burnout Syndrome with P=0.015 (95% CI: 0.4-0.9). CONCLUSIONS: Relation between burnout syndrome and body image dissatisfaction in athletes was found. In addition, a relationship between practicing an individual sport and burnout syndrome was also found. More studies are necessary to confirm these relationships.
Assuntos
Atletas/psicologia , Insatisfação Corporal , Esgotamento Profissional/psicologia , Adulto , Estudos Transversais , Feminino , Humanos , Masculino , Esportes/psicologia , Inquéritos e Questionários , Universidades , Adulto JovemRESUMO
Sigma-1 receptors (S1R) and sigma-2 receptors (S2R) may modulate nociception without the liabilities of opioids, offering a promising therapeutic target to treat pain. The purpose of this study was to investigate the in vivo analgesic and anti-allodynic activity of two novel sigma receptor antagonists, the S1R-selective CM-304 and its analog the non-selective S1R/S2R antagonist AZ-66. Inhibition of thermal, induced chemical or inflammatory pain, as well as the allodynia resulting from chronic nerve constriction injury (CCI) and cisplatin exposure as models of neuropathic pain were assessed in male mice. Both sigma receptor antagonists dose-dependently (10-45 mg/kg, i.p.) reduced allodynia in the CCI and cisplatin neuropathic pain models, equivalent at the higher dose to the effect of the control analgesic gabapentin (50 mg/kg, i.p.), although AZ-66 demonstrated a much longer duration of action. Both CM-304 and AZ-66 produced antinociception in the writhing test [0.48 (0.09-1.82) and 2.31 (1.02-4.81) mg/kg, i.p., respectively] equivalent to morphine [1.75 (0.31-7.55) mg/kg, i.p.]. Likewise, pretreatment (i.p.) with either sigma-receptor antagonist dose-dependently produced antinociception in the formalin paw assay of inflammatory pain. However, CM-304 [17.5 (12.7-25.2) mg/kg, i.p.) and AZ-66 [11.6 (8.29-15.6) mg/kg, i.p.) were less efficacious than morphine [3.87 (2.85-5.18) mg/kg, i.p.] in the 55°C warm-water tail-withdrawal assay. While AZ-66 exhibited modest sedative effects in a rotarod assay and conditioned place aversion, CM-304 did not produce significant effects in the place conditioning assay. Overall, these results demonstrate the S1R selective antagonist CM-304 produces antinociception and anti-allodynia with fewer liabilities than established therapeutics, supporting the use of S1R antagonists as potential treatments for chronic pain.