RESUMO
BACKGROUND: Idiopathic pulmonary fibrosis (IPF) is a lethal interstitial disease with unknown etiology and no effective cure, posing a great health burden to society. Erythropoietin (EPO) has been demonstrated to have protective roles in various tissues such as brain, spinal cord, heart, kidney and lung tissues. In this study, we investigate the specific anti-inflammatory, antioxidant and antiapoptotic effects of erythropoietin on lung tissue in a bleomycin-induced rat model of idiopathic pulmonary fibrosis. METHODS: Recombinant human EPO or saline was injected, and the animals were monitored for 14 days after bleomycin instillation. Their hematocrit and serum EPO levels were determined. Histological and immunohistochemical analyses were performed. RESULTS: The extent of tissue injury, determined through morphometric analysis, was significantly decreased in size in animals treated with erythropoietin. An immunohistochemical analysis of the expression of cyclooxygenase-2 (COX-2), inducible synthase of nitric oxide (i-NOS), metalloproteinase-9 (MMP-9), erythropoietin receptor (EPO-R), and cytochrome-C (cyt-C) found these enzymes to be decreased in a statistically significant manner in animals treated with erythropoietin when compared to a non-treated group. CONCLUSIONS: The reduced expression of COX-2, i-NOS, MMP-9, EPO-R, and i-NOS in the lung tissues of animals treated with EPO indicates the anti-inflammatory, antioxidant and antiapoptotic action of erythropoietin, suggesting its potential therapeutic role in pulmonary fibrosis.
RESUMO
OBJECTIVE: Our objective was to correlate parvovirus-B19 and Epstein-Barr virus (EBV) infections with apoptotic biomarker levels in tissues from placentas from spontaneous abortions and cases of elective termination of pregnancy. We also explored if viral presence could cause spontaneous abortions by trying to associate the levels of pro-apoptotic markers with adverse pregnancy outcomes. MATERIALS AND METHODS: We used 194 placental samples, of which 152 came from spontaneous abortions and were the study group and 42 controls came from cases of elective pregnancy termination. Hematoxylin and eosin (H&E) staining was performed to investigate morphological changes in the tissues, and then indirect immunohistochemistry to evaluate the expression of B19, EBV, M30, terminal deoxynucleotidyl transferase assay (TUNEL), and nuclear factor kappa B (NF-kB). Statistical analysis was performed using SPSS v. 19.0 (IBM). RESULTS: Higher levels of apoptosis were observed in the spontaneous abortion group (p<0.001) with statistical significance and their presence was also correlated with statistical significance with viral infection (p<0.001). Also, viral infections were observed only in cases of spontaneous abortion. When simple and multivariate logistic regression was performed we confirmed that viral presence remained an independent prognostic factor for high expression of all apoptotic biomarkers with statistical significance (p<0.001). CONCLUSIONS: Our results indicate that viral presence can lead to deregulation of apoptotic pathways within the maternal-fetal environment and thus work as a trigger event for spontaneous abortions.
RESUMO
Disseminated histoplasmosis is the form of a mycosis caused by the fungus Histoplasma capsulatum that mainly occurs in immunosuppressed hosts, usually with non-specific symptoms. In non-endemic areas, where the disease is rarely involved in the differential diagnosis, a delay in treatment may lead to severe medical complications. Due to the rising prevalence of disseminated histoplasmosis in these areas, a thorough medical history is regarded as the decisive factor in prompt diagnosis of the disease. We, herein, report the case of an immunocompetent Greek farmer with disseminated histoplasmosis whose condition was initially misdiagnosed, and the consequential inadequate treatment led to his death.
RESUMO
Skin stem cells (SCs) play a pivotal role in supporting tissue homeostasis. Several types of SCs are responsible for maintaining and regenerating skin tissue. These include bulge SCs and others residing in the interfollicular epidermis, infundibulum, isthmus, sebaceous glands, and sweat glands. The emergence of skin SCs commences during embryogenesis, where multipotent SCs arise from various precursor populations. These early events set the foundation for the diverse pool of SCs that will reside in the adult skin, ready to respond to tissue repair and regeneration demands. A network of molecular cues regulates skin SC behavior, balancing quiescence, self-renewal, and differentiation. The disruption of this delicate equilibrium can lead to SC exhaustion, impaired wound healing, and pathological conditions such as skin cancer. The present review explores the intricate mechanisms governing the development, activation, and differentiation of skin SCs, shedding light on the molecular signaling pathways that drive their fate decisions and skin homeostasis. Unraveling the complexities of these molecular drivers not only enhances our fundamental knowledge of skin biology but also holds promise for developing novel strategies to modulate skin SC fate for regenerative medicine applications, ultimately benefiting patients with skin disorders and injuries.
RESUMO
Skin, the largest organ in the human body, is a crucial protective barrier that plays essential roles in thermoregulation, sensation, and immune defence. This complex organ undergoes intricate processes of development. Skin development initiates during the embryonic stage, orchestrated by molecular cues that control epidermal specification, commitment, stratification, terminal differentiation, and appendage growth. Key signalling pathways are integral in coordinating the development of the epidermis, hair follicles, and sweat glands. The complex interplay among these pathways is vital for the appropriate formation and functionality of the skin. Disruptions in multiple molecular pathways can give rise to a spectrum of skin diseases, from congenital skin disorders to cancers. By delving into the molecular mechanisms implicated in developmental processes, as well as in the pathogenesis of diseases, this narrative review aims to present a comprehensive understanding of these aspects. Such knowledge paves the way for developing innovative targeted therapies and personalised treatment approaches for various skin conditions.
RESUMO
The neural crest (NC), also known as the "fourth germ layer", is an embryonic structure with important contributions to multiple tissue and organ systems. Neural crest cells (NCCs) are subjected to epithelial to mesenchymal transition and migrate throughout the embryo until they reach their destinations, where they differentiate into discrete cell types. Specific gene expression enables this precise NCCs delamination and colonization potency in distinct and diverse locations therein. This review aims to summarize the current experimental evidence from multiple species into the NCCs specifier genes that drive this embryo body axes segmentation. Additionally, it attempts to filter further into the genetic background that produces these individual cell subpopulations. Understanding the multifaceted genetic makeup that shapes NC-related embryonic structures will offer valuable insights to researchers studying organogenesis and disease phenotypes arising from dysmorphogenesis.
Assuntos
Diferenciação Celular , Crista Neural , Organogênese , Crista Neural/citologia , Animais , Diferenciação Celular/genética , Organogênese/genética , Humanos , Regulação da Expressão Gênica no Desenvolvimento , Transição Epitelial-Mesenquimal/genéticaRESUMO
Background IL-19 and IL-24 induce proinflammatory cytokine production through the Janus kinase-signal transducer and activator of transcription (JAK-STAT) pathway. The primary objective of this study was to investigate any changes in IL-19 and IL-24 expression between inflammatory bowel disease (IBD) patients and healthy controls, as well as before and after the initiation of biologics. The secondary objective was to investigate any relation between their expression and disease phenotype and activity. Methods IL-19 and IL-24 expression was measured in intestinal tissue samples from 121 patients with moderate to severe IBD versus healthy controls using immunohistochemistry. Their expression was then measured 12 months after treatment on the patient group treated with biologics. The disease activity was measured before and after treatment using the Harvey Bradshaw Index (HBI) for Crohn's disease (CD) patients and the Mayo Score (MS) for ulcerative colitis (UC) patients. Data were analyzed using SPSS (IBM Inc., Armonk, New York). Results IL-19 expression was raised in the IBD group versus healthy controls. In the CD group, the IL-19 expression was related with the disease activity score post-biologic treatment. IL-24 was also highly expressed in patients with active UC and CD and was increased post-treatment. Its expression in UC was statistically related with the MS. Conclusions IL-24 and IL-19 are key factors in IBD-related intestinal inflammation and this is one of the few human studies to suggest that. An immunosuppressive role of IL-24 was demonstrated in the UC group. A future use as biomarkers of disease activity and response to treatment might be feasible.
RESUMO
Chromophobe RCC (ChRCC) carries the best prognosis among all RCC subtypes, yet it lacks a proper grading system. Various systems have been suggested in the past, causing much controversy, and Avulova et al. recently proposed a promising four-tier grading system that takes into consideration tumor necrosis. Dysregulation of the mammalian target of the rapamycin (mTOR) pathway plays a key role in ChRCC pathogenesis, highlighting its molecular complexity. The present retrospective study aimed to evaluate the prognostic factors associated with a more aggressive ChRCC phenotype. Materials and Methods: Seventy-two patients diagnosed with ChRCC between 2004 and 2017 were included in our study. Pathology reports and tissue blocks were reviewed, and immunohistochemistry (IHC) was performed in order to assess the expressions of CYLD (tumor-suppressor gene) and mTOR, among other markers. Univariate analysis was performed, and OS was assessed using the Kaplan-Meier method. Results: In our study, 74% of patients were male, with a mean age of 60 years, and the mean tumor size was 63 mm (±44). The majority (54%) were followed for more than 10 years at intervals ranging between 44 and 222 months. The risk of death was significantly higher for patients that were classified as Grade 4 in the Avulova system (HR: 5.83; 95% CI, 1.37-24.7; p: = 0.017). As far as the IHC is concerned, mTOR expression was associated with an HR of 8.57 (95% CI, 1.91-38.5; p = 0.005), and CYLD expression was associated with an HR of 17.3 (95% CI, 1.57-192; p = 0.02). Conclusions: In our study, the Avulova grading system seems to be positively correlated with OS in patients diagnosed with ChRCC. Furthermore, an elevated mTOR expression also shows a negative correlation with OS, whereas an elevated CYLD expression does not seem to exert a protective role. However, because only a small proportion (4.2%) of our patients died due to ChRCC, despite the long follow-up period, the results must be interpreted with caution. Further research is needed to validate our findings.
Assuntos
Carcinoma de Células Renais , Neoplasias Renais , Gradação de Tumores , Serina-Treonina Quinases TOR , Humanos , Masculino , Carcinoma de Células Renais/mortalidade , Carcinoma de Células Renais/patologia , Feminino , Pessoa de Meia-Idade , Estudos Retrospectivos , Neoplasias Renais/mortalidade , Neoplasias Renais/patologia , Prognóstico , Idoso , Serina-Treonina Quinases TOR/análise , Gradação de Tumores/métodos , Adulto , Imuno-Histoquímica/métodos , Enzima Desubiquitinante CYLD , Estimativa de Kaplan-Meier , Biomarcadores Tumorais/análiseRESUMO
The secondary sex ratio (SSR), indicating the ratio of male to female live births, has garnered considerable attention within the realms of reproductive biology and public health. Numerous factors have been posited as potential trendsetters of the SSR. Given the extensive research on the impact of daily behaviors and habits on individuals' reproductive health, there is a plausible suggestion that lifestyle choices may also influence the SSR. By synthesizing the existing literature on the current research field, this comprehensive review indicates that an elevated SSR has been associated with an increased intake of fatty acids and monosaccharides, proper nutrition, higher educational levels, financial prosperity, and favorable housing conditions. On the other hand, a decreased SSR may be linked to undernutrition, socioeconomic disparities, and psychological distress, aligning with the Trivers-Willard hypothesis. Occupational factors, smoking habits, and cultural beliefs could also contribute to trends in the SSR. Our review underscores the significance of considering the aforementioned factors in studies examining the SSR and emphasizes the necessity for further research to unravel the mechanisms underpinning these connections. A more profound comprehension of SSR alterations due to lifestyle holds the potential to adequately develop public health interventions and healthcare strategies to enhance reproductive health and overall well-being.
RESUMO
The secondary sex ratio (SSR), defined as the ratio of male to female offspring at birth, has garnered significant scientific interest due to its potential impact on population dynamics and evolution. In recent years, there has been a growing concern regarding the potential consequences of environmental chemicals on the SSR, given their widespread exposure and potential enduring ramifications on the reproductive system. While SSR serves as an indicator of health, ongoing research and scientific inquiry are being conducted to explore the potential relationship between chemicals and offspring ratio. Although some studies have suggested a possible correlation, others have yielded inconclusive results, indicating that the topic is intricate and still needs to be elucidated. The precise mechanism by which chemical agents exert their influence on the SSR remains ambiguous, with disruption of the endocrine system being a prominent justification. In light of the complex interplay between chemical exposure and SSR, the present review aims to comprehensively examine and synthesize existing scientific literature to gain a deeper understanding of how specific chemical exposures may impact SSR. Insights into chemical hazards that shift SSR patterns or trends could guide prevention strategies, including legislative bans of certain chemicals, to minimize environmental and public health risks.
Assuntos
Substâncias Perigosas , Razão de Masculinidade , Substâncias Perigosas/toxicidade , Substâncias Perigosas/análise , Feminino , Animais , Masculino , Disruptores Endócrinos/análise , Disruptores Endócrinos/toxicidade , Poluentes Ambientais/análise , Poluentes Ambientais/toxicidade , Exposição Ambiental/estatística & dados numéricos , HumanosRESUMO
Neurocristopathies (NCPs) encompass a spectrum of disorders arising from issues during the formation and migration of neural crest cells (NCCs). NCCs undergo epithelial-mesenchymal transition (EMT) and upon key developmental gene deregulation, fetuses and neonates are prone to exhibit diverse manifestations depending on the affected area. These conditions are generally rare and often have a genetic basis, with many following Mendelian inheritance patterns, thus making them perfect candidates for precision medicine. Examples include cranial NCPs, like Goldenhar syndrome and Axenfeld-Rieger syndrome; cardiac-vagal NCPs, such as DiGeorge syndrome; truncal NCPs, like congenital central hypoventilation syndrome and Waardenburg syndrome; and enteric NCPs, such as Hirschsprung disease. Additionally, NCCs' migratory and differentiating nature makes their derivatives prone to tumors, with various cancer types categorized based on their NCC origin. Representative examples include schwannomas and pheochromocytomas. This review summarizes current knowledge of diseases arising from defects in NCCs' specification and highlights the potential of precision medicine to remedy a clinical phenotype by targeting the genotype, particularly important given that those affected are primarily infants and young children.
RESUMO
Interleukins are potential therapeutic targets that can alter the prognosis and progression of inflammatory bowel disease (IBD). The roles of IL-6, IL-10, IL-17, and IL-23 have been extensively studied, setting the stage for the development of novel treatments for patients with IBD. Other cytokines have been less extensively studied. Members of the IL-20 family, mainly IL-19 and IL-24, are involved in the pathogenesis of IBD, but their exact role remains unclear. Similarly, IL-33, a newly identified cytokine, has been shown to control the Th1 effector response and the action of colonic Tregs in animal models of colitis and patients with IBD. IL-21 is involved in the Th1, Th2, and Th17 responses. Data support a promising future use of these interleukins as biomarkers of severe diseases and as potential therapeutic targets for novel monoclonal antibodies. This review aims to summarize the existing studies involving animal models of colitis and patients with IBD to clarify their role in the intestinal mucosa.
RESUMO
Periostin, a secreted matricellular protein, has been implicated in cardiac extracellular matrix remodeling and fibrosis. Evidence suggest that periostin stimulates cardiomyocyte hypertrophy. The current study aims to investigate the extent of periostin expression in patients with advanced Hypertrophic Cardiomyopathy (HCM) and its correlation with fibrosis and hallmark histopathological features of the disease. Interventricular septal tissue from thirty-nine HCM patients who underwent myectomy and five controls who died from non-cardiac causes was obtained. Staining with Masson's Trichrome and immunohistochemistry were used to localize fibrosis and periostin respectively. The extent of fibrosis and the expression of periostin were defined as the stained percentage of total tissue area using digital pathology software. Periostin expression was higher in HCM patients compared to controls (p<0.0001), positively correlated with the extent of fibrosis (r = 0.82, p<0.001), positively correlated with maximal interventricular septal thickness (Rho = 0.33, p = 0.04) and negatively correlated with LVEF (r = -0.416, p = 0.009). Periostin was approximately co-localized with fibrosis. Mean periostin expression was lower in patients with mild grade cardiomyocyte hypertrophy compared to those with moderate grade (p = 0.049) and lower in patients with mild grade replacement fibrosis compared to moderate grade (p = 0.036). In conclusion, periostin is overexpressed in advanced HCM, correlated with fibrosis and possibly related to cardiomyocyte hypertrophy.
Assuntos
Cardiomiopatia Hipertrófica , Cardiopatias Congênitas , Humanos , Miócitos Cardíacos/patologia , Fibrose , Cardiopatias Congênitas/patologia , Hipertrofia/patologiaRESUMO
Introduction Cataract formation is a prevalent issue worldwide, and understanding the cellular processes involved is crucial to advancing treatment options. The scope of the study was to explore the presence of apoptotic cells in the lens epithelium of Greek patients with senile cataracts using transmission electron microscopy (TEM). Methods Twenty-one patients with senile cataracts were included in this cross-sectional study, and their anterior lens capsules were thoroughly examined. The presence of apoptosis was ultrastructurally investigated, and its association with age, gender, biomicroscopic type of cataract, the coexistence of exfoliation syndrome (XFS), diabetes mellitus, and glaucoma was statistically correlated. Results We detected apoptotic cells in nine of the 21 patients. Morphological features indicative of apoptosis in the nuclei included degradation, nuclear membrane irregularity, reduction of nuclear volume, condensation, and margination of chromatin. The cytoplasm either appeared denser or contained vacuoles. Budding with membrane blebbing and pinopode-like projections were frequently observed. Apoptotic cells appeared smaller, exhibiting loose connections with neighboring cells and the basement membrane (BM). Interestingly, apoptotic bodies were also detected. Conclusions None of the examined risk factors showed a connection to apoptosis, whereas neighboring lens epithelial cells (LECs) phagocytose apoptotic bodies, seemingly assumed the role of macrophages. Comparing apoptosis rates between populations with different sun exposure levels could help reveal the relationship between ultraviolet B radiation exposure, apoptosis, and cataract formation.
RESUMO
Interleukins are considered to be potential therapeutic targets that can alter the prognosis and disease progression of IBD. IL-21 has proven to be involved in effector Th1, Th2 and Th17 responses. Similarly, IL-33, a newly identified cytokine, has been shown to control the Th1 effector response and the action of the colonic Tregs in animal models of colitis and patients with IBD. In this retrospective study, we have studied the expression of these interleukins, using immunohistochemistry, in 121 patients with moderate to severe IBD before and after treatment with biologics. The results were statistically processed using SPSSTM. Increased IL-21 expression was found in the UC and CD groups versus the controls. The IL-33 expression was found to be increased in the post-treatment UC and CD groups, suggesting a protective role of this interleukin against bowel inflammation. The IL-33 expression post-treatment was reversely correlated with the activity index score in CD patients, suggesting a better response to treatment in patients with higher IL-33 mucosa levels. This is the first immunohistochemical study of the expression of those interleukins in bowel mucosa before and after treatment with biologics. These data support a possibly promising future use of these interleukins as biomarkers of severe disease and response to treatment and as potential therapeutic targets for novel monoclonal antibodies.
RESUMO
The data on tumor molecular profiling of European patients with prostate cancer is limited. Our aim was to evaluate the prevalence and prognostic and predictive values of gene alterations in unselected patients with prostate cancer. The presence of gene alterations was assessed in patients with histologically confirmed prostate cancer using the ForeSENTIA® Prostate panel (Medicover Genetics), targeting 36 clinically relevant genes and microsatellite instability testing. The primary endpoint was the prevalence of gene alterations in homologous recombination repair (HRR) genes. Overall, 196 patients with prostate cancer were evaluated (median age 72.2 years, metastatic disease in 141 (71.9%) patients). Gene alterations were identified in 120 (61%) patients, while alteration in HRR genes were identified in 34 (17.3%) patients. The most commonly mutated HRR genes were ATM (17, 8.7%), BRCA2 (9, 4.6%) and BRCA1 (4, 2%). The presence of HRR gene alterations was not associated with advanced stage (p = 0.21), age at diagnosis (p = 0.28), Gleason score (p = 0.17) or overall survival (HR 0.72; 95% CI: 0.41-1.26; p = 0.251). We identified clinically relevant somatic gene alterations in European patients with prostate cancer. These molecular alterations have prognostic significance and therapeutic implications and/or may trigger genetic testing in selected patients. In the era of precision medicine, prospective research on the predictive role of these alterations for innovative treatments or their combinations is warranted.
Assuntos
Medicina de Precisão , Neoplasias da Próstata , Masculino , Humanos , Idoso , Estudos Prospectivos , Neoplasias da Próstata/diagnóstico , Neoplasias da Próstata/genética , Neoplasias da Próstata/terapia , Testes GenéticosRESUMO
Microglia belong to tissue-resident macrophages of the central nervous system (CNS), representing the primary innate immune cells. This cell type constitutes ~7% of non-neuronal cells in the mammalian brain and has a variety of biological roles integral to homeostasis and pathophysiology from the late embryonic to adult brain. Its unique identity that distinguishes its "glial" features from tissue-resident macrophages resides in the fact that once entering the CNS, it is perennially exposed to a unique environment following the formation of the blood-brain barrier. Additionally, tissue-resident macrophage progenies derive from various peripheral sites that exhibit hematopoietic potential, and this has resulted in interpretation issues surrounding their origin. Intensive research endeavors have intended to track microglial progenitors during development and disease. The current review provides a corpus of recent evidence in an attempt to disentangle the birthplace of microglia from the progenitor state and underlies the molecular elements that drive microgliogenesis. Furthermore, it caters towards tracking the lineage spatiotemporally during embryonic development and outlining microglial repopulation in the mature CNS. This collection of data can potentially shed light on the therapeutic potential of microglia for CNS perturbations across various levels of severity.
RESUMO
Paediatric cardiomyopathies form a heterogeneous group of disorders characterized by structural and electrical abnormalities of the heart muscle, commonly due to a gene variant of the myocardial cell structure. Mostly inherited as a dominant or occasionally recessive trait, they might be part of a syndromic disorder of underlying metabolic or neuromuscular defects or combine early developing extracardiac abnormalities (i.e., Naxos disease). The annual incidence of 1 per 100,000 children appears higher during the first two years of life. Dilated and hypertrophic cardiomyopathy phenotypes share an incidence of 60% and 25%, respectively. Arrhythmogenic right ventricular cardiomyopathy (ARVC), restrictive cardiomyopathy, and left ventricular noncompaction are less commonly diagnosed. Adverse events such as severe heart failure, heart transplantation, or death usually appear early after the initial presentation. In ARVC patients, high-intensity aerobic exercise has been associated with worse clinical outcomes and increased penetrance in at-risk genotype-positive relatives. Acute myocarditis in children has an incidence of 1.4-2.1 cases/per 100,000 children per year, with a 6-14% mortality rate during the acute phase. A genetic defect is considered responsible for the progression to dilated cardiomyopathy phenotype. Similarly, a dilated or arrhythmogenic cardiomyopathy phenotype might emerge with an episode of acute myocarditis in childhood or adolescence. This review provides an overview of childhood cardiomyopathies focusing on clinical presentation, outcome, and pathology.
Assuntos
Displasia Arritmogênica Ventricular Direita , Cardiomiopatias , Miocardite , Adolescente , Humanos , Criança , Miocardite/metabolismo , Cardiomiopatias/epidemiologia , Cardiomiopatias/terapia , Cardiomiopatias/diagnóstico , Miocárdio/patologia , Displasia Arritmogênica Ventricular Direita/genética , FenótipoRESUMO
Embryogenesis and fetal development are highly delicate and error-prone processes in their core physiology, let alone if stress-associated factors and conditions are involved. Space radiation and altered gravity are factors that could radically affect fertility and pregnancy and compromise a physiological organogenesis. Unfortunately, there is a dearth of information examining the effects of cosmic exposures on reproductive and proliferating outcomes with regard to mammalian embryonic development. However, explicit attention has been given to investigations exploring discrete structures and neural networks such as the vestibular system, an entity that is viewed as the sixth sense and organically controls gravity beginning with the prenatal period. The role of the gut microbiome, a newly acknowledged field of research in the space community, is also being challenged to be added in forthcoming experimental protocols. This review discusses the data that have surfaced from simulations or actual space expeditions and addresses developmental adaptations at the histological level induced by an extraterrestrial milieu.
RESUMO
BACKGROUND: Valproic acid (VPA), a prescribed drug commonly used for various neurological perturbations, has been implicated in teratogenic inflictions on developing fetuses during pregnancy. The purpose of this research was to delineate the gross morphological and histological effects of VPA in the developing eye tunics and lens. METHODS: A time-dependent administration of 500 mg/kg VPA to BALB/c groups of female mice was coordinated during organogenesis (gestational days 7, 8, and 9) and compared to controls that received normal saline. Seized fetuses were checked for macroscopic eye anomalies, histological malformations with Azan trichrome staining, and levels of apoptotic activity with the terminal deoxynucleotidyl transferase-mediated nick end labeling (TUNEL) assay. RESULTS: Histochemical analysis showed that VPA-treated groups exhibited collagen deficiency (2.5-50% decrease in aniline blue intensity) and a marked increase in TUNEL-positive cells (p < .05) in corneal stroma and sclera/choroid layers while less was detected in retina and lens, when compared to controls. CONCLUSIONS: Since the evaluation of the inner structures did not manifest major differences, we conclude that VPA teratogenic influence display eclectic toxicity, as seen by increased apoptosis to eye layers with high degree fibrous context, particularly the outer tunics.