Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Front Microbiol ; 14: 1063368, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36876072

RESUMO

Introduction: Enteropathogenic Escherichia coli (EPEC), enterohemorrhagic E. coli (EHEC) and Citrobacter rodentium (CR) belong to a group of pathogens that share the ability to form "attaching and effacing" (A/E) lesions on the intestinal epithelia. A pathogenicity island known as the locus of enterocyte effacement (LEE) contains the genes required for A/E lesion formation. The specific regulation of LEE genes relies on three LEE-encoded regulators: Ler activates the expression of the LEE operons by antagonizing the silencing effect mediated by the global regulator H-NS, GrlA activates ler expression and GrlR represses the expression of the LEE by interacting with GrlA. However, despite the existing knowledge of LEE regulation, the interplay between GrlR and GrlA and their independent roles in gene regulation in A/E pathogens are still not fully understood. Methods: To further explore the role that GrlR and GrlA in the regulation of the LEE, we used different EPEC regulatory mutants and cat transcriptional fusions, and performed protein secretion and expression assays, western blotting and native polyacrylamide gel electrophoresis. Results and discussion: We showed that the transcriptional activity of LEE operons increased under LEE-repressing growth conditions in the absence of GrlR. Interestingly, GrlR overexpression exerted a strong repression effect over LEE genes in wild-type EPEC and, unexpectedly, even in the absence of H-NS, suggesting that GrlR plays an alternative repressor role. Moreover, GrlR repressed the expression of LEE promoters in a non-EPEC background. Experiments with single and double mutants showed that GrlR and H-NS negatively regulate the expression of LEE operons at two cooperative yet independent levels. In addition to the notion that GrlR acts as a repressor by inactivating GrlA through protein-protein interactions, here we showed that a DNA-binding defective GrlA mutant that still interacts with GrlR prevented GrlR-mediated repression, suggesting that GrlA has a dual role as a positive regulator by antagonizing GrlR's alternative repressor role. In line with the importance of the GrlR-GrlA complex in modulating LEE gene expression, we showed that GrlR and GrlA are expressed and interact under both inducing and repressing conditions. Further studies will be required to determine whether the GrlR alternative repressor function depends on its interaction with DNA, RNA, or another protein. These findings provide insight into an alternative regulatory pathway that GrlR employs to function as a negative regulator of LEE genes.

2.
Sci Rep ; 11(1): 8541, 2021 04 20.
Artigo em Inglês | MEDLINE | ID: mdl-33879812

RESUMO

Enteropathogenic E. coli virulence genes are under the control of various regulators, one of which is PerA, an AraC/XylS-like regulator. PerA directly promotes its own expression and that of the bfp operon encoding the genes involved in the biogenesis of the bundle-forming pilus (BFP); it also activates PerC expression, which in turn stimulates locus of enterocyte effacement (LEE) activation through the LEE-encoded regulator Ler. Monomeric PerA directly binds to the per and bfp regulatory regions; however, it is not known whether interactions between PerA and the RNA polymerase (RNAP) are needed to activate gene transcription as has been observed for other AraC-like regulators. Results showed that PerA interacts with the alpha subunit of the RNAP polymerase and that it is necessary for the genetic and phenotypic expression of bfpA. Furthermore, an in silico analysis shows that PerA might be interacting with specific alpha subunit amino acids residues highlighting the direction of future experiments.


Assuntos
RNA Polimerases Dirigidas por DNA/metabolismo , Escherichia coli Enteropatogênica/genética , Infecções por Escherichia coli/patologia , Proteínas de Escherichia coli/genética , Proteínas Repressoras/metabolismo , RNA Polimerases Dirigidas por DNA/química , Escherichia coli Enteropatogênica/isolamento & purificação , Escherichia coli Enteropatogênica/metabolismo , Infecções por Escherichia coli/genética , Infecções por Escherichia coli/metabolismo , Infecções por Escherichia coli/microbiologia , Proteínas de Escherichia coli/metabolismo , Óperon , Regiões Promotoras Genéticas , Fatores de Transcrição/metabolismo , Virulência/genética
3.
FEMS Microbiol Lett ; 357(2): 105-14, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24966050

RESUMO

The molecular mechanisms controlling expression of the long polar fimbriae 2 (Lpf2) of enterohemorrhagic Escherichia coli (EHEC) O157:H7 were evaluated. Primer extension was used to locate the lpfA2 transcriptional start site in EHEC strain EDL933 at 171 bp upstream of the lpfA2 start codon. Semi-quantitative RT-PCR demonstrated that the highest lpfA2 expression occurs between an OD600 of 1.0 and 1.2 in DMEM at pH 6.5 and 37 °C. The level of lpfA2 transcription at OD600 1.2 and pH 6.5 was four times greater than that at pH 7.2. Although lpfA2 expression was decreased under iron-depleted conditions, its expression was increased in a ferric-uptake-regulator (Fur) mutant strain. The lpfA2 transcript was 0.7 and 2 times more abundant in wt EHEC grown in DMEM pH 6.5 plus iron and MacConkey broth at 25 °C, respectively, than in DMEM at pH 6.5. The lpf2 expression in DMEM pH 6.5 plus iron and bile salts was 2.7 times more abundant than baseline conditions. Further, transcription in the EDL933∆fur was 0.6 and 0.8 times higher as compared with the wt strain grown in DMEM pH 6.5 plus iron and MacConkey broth, respectively. Electrophoretic mobility shift assays showed that purified Fur interacts with the lpf2 regulatory region, indicating that Fur repression is exerted by direct binding to the promoter region. In summary, we demonstrated that the EHEC lpf2 operon is regulated in response to temperature, pH, bile salts and iron, during the exponential phase of growth, and is controlled by Fur.


Assuntos
Escherichia coli O157/efeitos dos fármacos , Escherichia coli O157/efeitos da radiação , Proteínas de Escherichia coli/genética , Proteínas de Fímbrias/genética , Regulação Bacteriana da Expressão Gênica/efeitos dos fármacos , Regulação Bacteriana da Expressão Gênica/efeitos da radiação , Proteínas de Bactérias/metabolismo , Ácidos e Sais Biliares/metabolismo , Meios de Cultura/química , Escherichia coli O157/genética , Concentração de Íons de Hidrogênio , Ferro/metabolismo , Regiões Promotoras Genéticas , Ligação Proteica , DNA Polimerase Dirigida por RNA , Proteínas Repressoras/metabolismo , Temperatura , Sítio de Iniciação de Transcrição
4.
J Bacteriol ; 196(12): 2143-54, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24659766

RESUMO

LeuO is a LysR-type transcriptional regulator (LTTR) that has been described to be a global regulator in Escherichia coli and Salmonella enterica, since it positively and negatively regulates the expression of genes involved in multiple biological processes. LeuO is comprised of an N-terminal DNA-binding domain (DBD) with a winged helix-turn-helix (wHTH) motif and of a long linker helix (LH) involved in dimerization that connects the DBD with the C-terminal effector-binding domain (EBD) or regulatory domain (RD; which comprises subdomains RD-I and RD-II). Here we show that the oligomeric structure of LeuO is a tetramer that binds with high affinity to DNA. A collection of single amino acid substitutions in the LeuO DBD indicated that this region is involved in oligomerization, in positive and negative regulation, as well as in DNA binding. Mutants with point mutations in the central and C-terminal regions of RD-I were affected in transcriptional activation. Deletion of the RD-II and RD-I C-terminal subdomains affected not only oligomerization but also DNA interaction, showing that they are involved in positive and negative regulation. Together, these data demonstrate that not only the C terminus but also the DBD of LeuO is involved in oligomer formation; therefore, each LeuO domain appears to act synergistically to maintain its regulatory functions in Salmonella enterica serovar Typhi.


Assuntos
Proteínas de Bactérias/metabolismo , DNA Bacteriano/metabolismo , Regulação Bacteriana da Expressão Gênica/fisiologia , Salmonella typhi/metabolismo , Transcrição Gênica , Sequência de Aminoácidos , Proteínas de Bactérias/genética , Deleção de Genes , Dados de Sequência Molecular , Mutagênese Sítio-Dirigida , Ligação Proteica , Conformação Proteica , Salmonella typhi/genética
5.
J Bacteriol ; 194(18): 5020-33, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22797761

RESUMO

Enteropathogenic (EPEC) and enterohemorrhagic (EHEC) Escherichia coli are clinically important diarrheagenic pathogens that adhere to the intestinal epithelial surface. The E. coli common pili (ECP), or meningitis-associated and temperature-regulated (MAT) fimbriae, are ubiquitous among both commensal and pathogenic E. coli strains and play a role as colonization factors by promoting the interaction between bacteria and host epithelial cells and favoring interbacterial interactions in biofilm communities. The first gene of the ecp operon encodes EcpR (also known as MatA), a proposed regulatory protein containing a LuxR-like C-terminal helix-turn-helix (HTH) DNA-binding motif. In this work, we analyzed the transcriptional regulation of the ecp genes and the role of EcpR as a transcriptional regulator. EHEC and EPEC ecpR mutants produce less ECP, while plasmids expressing EcpR increase considerably the expression of EcpA and production of ECP. The ecp genes are transcribed as an operon from a promoter located 121 bp upstream of the start codon of ecpR. EcpR positively regulates this promoter by binding to two TTCCT boxes distantly located upstream of the ecp promoter, thus enhancing expression of downstream ecp genes, leading to ECP production. EcpR mutants in the putative HTH DNA-binding domain are no longer able to activate ecp expression or bind to the TTCCT boxes. EcpR-mediated activation is aided by integration host factor (IHF), which is essential for counteracting the repression exerted by histone-like nucleoid-structuring protein (H-NS) on the ecp promoter. This work demonstrates evidence about the interplay between a novel member of a diverse family of regulatory proteins and global regulators in the regulation of a fimbrial operon.


Assuntos
Aderência Bacteriana , Escherichia coli Êntero-Hemorrágica/patogenicidade , Escherichia coli Enteropatogênica/patogenicidade , Proteínas de Escherichia coli/metabolismo , Proteínas de Fímbrias/metabolismo , Regulação Bacteriana da Expressão Gênica , Fatores Hospedeiros de Integração/metabolismo , Fatores de Transcrição/metabolismo , Transcrição Gênica , Escherichia coli Êntero-Hemorrágica/genética , Escherichia coli Enteropatogênica/genética , Deleção de Genes , Dosagem de Genes
6.
J Bacteriol ; 193(7): 1622-32, 2011 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-21278287

RESUMO

Long polar fimbriae 1 (Lpf1) of Escherichia coli O157:H7 is a tightly regulated adhesin, with H-NS silencing the transcriptional expression of the lpf1 operon while Ler (locus of enterocyte effacement-encoded regulator) acts as an antisilencer. We mapped the minimal regulatory region of lpf1 required for H-NS- and Ler-mediated regulation and found that it is 79% AT rich. Three putative sites for H-NS binding were identified. Two of them, named silencer regulatory sequence 1 (SRS1) and SRS2, are located on a region that covers both of the lpf1 promoters (P1 and P2). The third putative H-NS binding site is located within the lpfA1 gene in a region extending from +258 bp to +545 bp downstream of ATG; however, this site does not seem to play a role in lpfA1 regulation under the conditions tested in this work. Ler was also found to interact with Ler binding sites (LBSs). Ler binding site 1 (LBS1) and LBS2 are located upstream of the two promoters. LBS1 overlaps SRS1, while LBS3 overlaps the P1 promoter and SRS2. Based on the experimental data, we propose that H-NS silences lpf1 expression by binding to both of the SRSs on the promoter region, forming an SRS-H-NS complex that prevents RNA polymerase-mediated transcription. A model of the regulation of the lpfA1 operon of E. coli O157:H7 by H-NS and Ler is discussed.


Assuntos
Adesinas de Escherichia coli/metabolismo , Escherichia coli O157/metabolismo , Proteínas de Escherichia coli/metabolismo , Proteínas de Fímbrias/metabolismo , Regulação Bacteriana da Expressão Gênica/fisiologia , Transativadores/metabolismo , Adesinas de Escherichia coli/genética , Sequência de Bases , Pegada de DNA , DNA Bacteriano , Desoxirribonucleases , Escherichia coli O157/genética , Proteínas de Escherichia coli/genética , Proteínas de Fímbrias/genética , Mutação , Regiões Promotoras Genéticas , Ligação Proteica , Transativadores/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA