Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Neuron ; 108(5): 919-936.e11, 2020 12 09.
Artigo em Inglês | MEDLINE | ID: mdl-32976770

RESUMO

Extrasynaptic actions of glutamate are limited by high-affinity transporters expressed by perisynaptic astroglial processes (PAPs): this helps maintain point-to-point transmission in excitatory circuits. Memory formation in the brain is associated with synaptic remodeling, but how this affects PAPs and therefore extrasynaptic glutamate actions is poorly understood. Here, we used advanced imaging methods, in situ and in vivo, to find that a classical synaptic memory mechanism, long-term potentiation (LTP), triggers withdrawal of PAPs from potentiated synapses. Optical glutamate sensors combined with patch-clamp and 3D molecular localization reveal that LTP induction thus prompts spatial retreat of astroglial glutamate transporters, boosting glutamate spillover and NMDA-receptor-mediated inter-synaptic cross-talk. The LTP-triggered PAP withdrawal involves NKCC1 transporters and the actin-controlling protein cofilin but does not depend on major Ca2+-dependent cascades in astrocytes. We have therefore uncovered a mechanism by which a memory trace at one synapse could alter signal handling by multiple neighboring connections.


Assuntos
Astrócitos/metabolismo , Ácido Glutâmico/metabolismo , Potenciação de Longa Duração/fisiologia , Sinapses/metabolismo , Animais , Astrócitos/ultraestrutura , Feminino , Imageamento Tridimensional/métodos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Técnicas de Cultura de Órgãos , Ratos , Ratos Sprague-Dawley , Ratos Wistar , Sinapses/ultraestrutura
2.
Neurochem Res ; 38(6): 1208-18, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23076631

RESUMO

The neural cell adhesion molecule, NCAM, is ubiquitously expressed within the CNS and has roles in development, cognition, neural plasticity and regulation of the immune system. NCAM is thus potentially an important pharmacological target for treatment of brain diseases. A cell adhesion mimetic FGL, a 15 amino-acid peptide derived from the second fibronectin type-III module of NCAM, has been shown to act as a neuroprotective agent in experimental disease and ageing models, restoring hippocampal/cognitive function and markedly alleviating deleterious changes in the CNS. However, the effects of FGL on the hippocampus of young healthy rats are unknown. The present study has examined the cellular neurobiological consequences of subcutaneous injections of FGL, on hippocampal cell morphometry in young (4 month-old) rats. We determined the effects of FGL on hippocampal volume, pyramidal neuron number/density (using unbiased quantitative stereology), and examined aspects of neurogenesis (using 2D morphometric analyses). FGL treatment reduced total volume of the dorsal hippocampus (associated with a decrease in total pyramidal neuron numbers in CA1 and CA3), and elevated the number of doublecortin immunolabeled neurons in the dentate gyrus, indicating a likely influence on neurogenesis in young healthy rats. These data indicate that FGL has a specific age dependent effect on the hippocampus, differing according to the development and maturity of the CNS.


Assuntos
Hipocampo/efeitos dos fármacos , Moléculas de Adesão de Célula Nervosa/farmacologia , Animais , Giro Denteado/química , Giro Denteado/efeitos dos fármacos , Proteínas do Domínio Duplacortina , Proteína Duplacortina , Hipocampo/citologia , Masculino , Proteínas Associadas aos Microtúbulos/análise , Neurogênese/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Neurônios/ultraestrutura , Neuropeptídeos/análise , Fármacos Neuroprotetores/farmacologia , Ratos , Ratos Wistar
3.
Proc Natl Acad Sci U S A ; 108(45): 18471-5, 2011 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-22025701

RESUMO

Long-term memory (LTM) formation has been linked with functional strengthening of existing synapses and other processes including de novo synaptogenesis. However, it is unclear whether synaptogenesis can contribute to LTM formation. Here, using α-calcium/calmodulin kinase II autophosphorylation-deficient (T286A) mutants, we demonstrate that when functional strengthening is severely impaired, contextual LTM formation is linked with training-induced PSD95 up-regulation followed by persistent generation of multiinnervated spines, a type of synapse that is characterized by several presynaptic terminals contacting the same postsynaptic spine. Both PSD95 up-regulation and contextual LTM formation in T286A mutants required signaling by the mammalian target of rapamycin (mTOR). Furthermore, we show that contextual LTM resists destabilization in T286A mutants, indicating that LTM is less flexible when synaptic strengthening is impaired. Taken together, we suggest that activation of mTOR signaling, followed by overexpression of PSD95 protein and synaptogenesis, contributes to formation of invariant LTM when functional strengthening is impaired.


Assuntos
Memória de Longo Prazo , Sinapses/fisiologia , Animais , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/metabolismo , Proteína 4 Homóloga a Disks-Large , Genes Precoces , Guanilato Quinases/farmacologia , Hipocampo/metabolismo , Proteínas de Membrana/farmacologia , Camundongos , Fosforilação , Sirolimo/farmacologia , Serina-Treonina Quinases TOR/metabolismo , Regulação para Cima/efeitos dos fármacos
4.
Exp Neurol ; 232(2): 318-28, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-21978973

RESUMO

Neuroglial activation is a typical hallmark of ageing within the hippocampus, and correlates with age-related cognitive deficits. We have used quantitative immunohistochemistry and morphometric analyses to investigate whether systemic treatment with the Neural Cell Adhesion Molecule (NCAM)-derived peptide FG Loop (FGL) specifically alters neuroglial activation and population densities within the aged rat hippocampus (22 months of age). A series of 50 µm paraformaldehyde/acrolein-fixed sections taken throughout the dorsal hippocampus (5 animals per group) were immunostained to detect astrocytes (GFAP and S100ß) and microglial cells (CD11b/OX42 and MHCII/OX6), and analysed using computerised image analysis and optical segmentation (Image-Pro Plus, Media Cybernetics). FGL treatment reduced the density of CD11b+ and MHCII+ microglia in aged animals, concomitant with a reduction in immunoreactivity for these phenotypic markers. FGL treatment also markedly reduced GFAP immunoreactivity within all hippocampal subfields in aged animals, without exerting an appreciable effect on the density of S100ß+ cells. These results demonstrate that FGL can indeed regulate neuroglial activation and reduce microglial cell density in the aged hippocampus, and support its potential use as a therapeutic agent in age-related brain disorders.


Assuntos
Envelhecimento/patologia , Hipocampo/efeitos dos fármacos , Microglia/efeitos dos fármacos , Moléculas de Adesão de Célula Nervosa/farmacologia , Fármacos Neuroprotetores/farmacologia , Animais , Astrócitos/efeitos dos fármacos , Astrócitos/patologia , Contagem de Células , Proteína Glial Fibrilar Ácida/genética , Hipocampo/patologia , Masculino , Microglia/patologia , Fatores de Crescimento Neural/genética , RNA Mensageiro/metabolismo , Ratos , Ratos Wistar , Subunidade beta da Proteína Ligante de Cálcio S100 , Proteínas S100/genética
5.
Eur J Neurosci ; 27(2): 301-14, 2008 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-18215229

RESUMO

The FGL peptide is a neural cell adhesion molecule (NCAM) mimetic comprising a 15-amino-acid-long sequence of the FG loop region of the second fibronectin type III module of NCAM. It corresponds to the binding site of NCAM for the fibroblast growth factor receptor 1. FGL improves cognitive function through enhancement of synaptic function. We examined the effect of FGL on synaptic and dendritic structure in the brains of aged (22-month-old) rats that were injected subcutaneously (8 mg/kg) at 2-day intervals until 19 days after the start of the experiment. Animals were perfused with fixative, brains removed and coronal sections cut at 50 microm. The hippocampal volume was measured, tissue embedded and ultrathin sections viewed in a JEOL 1010 electron microscope. Analyses were made of synaptic and dendritic parameters following three-dimensional reconstruction via images from a series of approximately 100 serial ultrathin sections. FGL affected neither hippocampal volume nor spine or synaptic density in the middle molecular layer of the dentate gyrus. However, it increased the ratio of mushroom to thin spines, number of multivesicular bodies and also increased the frequency of appearance of coated pits. Three-dimensional analysis showed a significant decrease in both post-synaptic density and apposition zone curvature of mushroom spines following FGL treatment, whereas for thin spines the convexity of the apposition zone increased. These data indicate that FGL induces large changes in the fine structure of synapses and dendritic spines in hippocampus of aged rats, complementing data showing its effect on cognitive processes.


Assuntos
Envelhecimento , Materiais Biomiméticos/farmacologia , Espinhas Dendríticas/ultraestrutura , Giro Denteado/ultraestrutura , Moléculas de Adesão de Célula Nervosa/farmacologia , Sinapses/ultraestrutura , Envelhecimento/efeitos dos fármacos , Animais , Moléculas de Adesão Celular/farmacologia , Espinhas Dendríticas/efeitos dos fármacos , Giro Denteado/efeitos dos fármacos , Imageamento Tridimensional/métodos , Masculino , Ratos , Ratos Wistar , Sinapses/efeitos dos fármacos
6.
Eur J Neurosci ; 27(2): 315-25, 2008 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-18215230

RESUMO

In adult brain the majority of AMPA glutamate receptor (GluR) subunits contain GluR2. In knock-out (KO) mice the absence of GluR2 results in consequences for synaptic plasticity including cognitive impairments. Here the morphology of dendritic spines and their synaptic contacts was analysed via three-dimensional reconstruction of serial electron micrographs from dentate gyrus (DG) of adult wild type (WT) and GluR2 KO mice. Pre-embedding immunocytochemical staining was used to examine the distribution and subcellular localization of AMPA receptor GluR1 and N-methyl-D-aspartate receptor NR1 subunits. There were no significant changes in synapse density in the DG of GluR2 KO compared with WT mice. However, in GluR2 KO mice there was a significant decrease in the percentage of synapses on mushroom spines but an increase in synapses on thin spines. There was also a large decrease in the proportion of synapses with complex perforated/segmented post-synaptic densities (PSDs) (25 vs. 78% in WT) but an increase in synapses with macular PSDs (75 vs. 22%). These data were coupled in GluR2 KO mice with significant decreases in volume and surface area of mushroom spines and their PSDs. In both GluR2 KO and WT mice, NR1 and GluR1 receptors were present in dendrites and spines but there was a significant reduction in NR1 labelling of spine membranes and cytoplasm in GluR2 KO mice, and a small decrease in GluR1 immunolabelling in membranes and cytoplasm of spines in GluR2 KO compared with WT mice. Our data demonstrate that the absence of GluR2 has a significant effect on both DG synapse and spine cytoarchitecture and the expression of NR1 receptors.


Assuntos
Espinhas Dendríticas/ultraestrutura , Giro Denteado/ultraestrutura , Receptores de AMPA/biossíntese , Sinapses/ultraestrutura , Animais , Espinhas Dendríticas/metabolismo , Giro Denteado/metabolismo , Regulação da Expressão Gênica/fisiologia , Masculino , Camundongos , Camundongos Knockout , Receptores de AMPA/genética , Sinapses/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA