RESUMO
Hair emerged as a biospecimen for long-term investigation of endogenous metabolic perturbations, reflecting the chemical composition circulating in the blood over the past months. Despite its potential, the use of human hair for metabolomics in Alzheimer's disease (AD) research remains limited. Here, we performed both untargeted and targeted metabolomic approaches to profile the key metabolic pathways in the hair of 5xFAD mice, a widely used AD mouse model. Furthermore, we applied the discovered metabolites to human subjects. Hair samples were collected from 6-month-old 5xFAD mice, a stage marked by widespread accumulation of amyloid plaques in the brain, followed by sample preparation and high-resolution mass spectrometry analysis. Forty-five discriminatory metabolites were discovered in the hair of 6-month-old 5xFAD mice compared to wild-type control mice. Enrichment analysis revealed three key metabolic pathways: arachidonic acid metabolism, sphingolipid metabolism, and alanine, aspartate, and glutamate metabolism. Among these pathways, six metabolites demonstrated significant differences in the hair of 2-month-old 5xFAD mice, a stage prior to the onset of amyloid plaque deposition. These findings suggest their potential involvement in the early stages of AD pathogenesis. When evaluating 45 discriminatory metabolites for distinguishing patients with AD from nondemented controls, a combination of l-valine and arachidonic acid significantly differentiated these two groups, achieving a 0.88 area under the curve. Taken together, these findings highlight the potential of hair metabolomics in identifying disease-specific metabolic alterations and developing biomarkers for improving disease detection and monitoring.
Assuntos
Doença de Alzheimer , Humanos , Camundongos , Animais , Lactente , Doença de Alzheimer/metabolismo , Ácido Araquidônico , Camundongos Transgênicos , Metabolômica/métodos , Metaboloma , Espectrometria de Massas , Modelos Animais de DoençasRESUMO
The meningeal lymphatic system drains the cerebrospinal fluid from the subarachnoid space to the cervical lymphatic system, primarily to the deep cervical lymph nodes. Perturbations of the meningeal lymphatic system have been linked to various neurologic disorders. A method to specifically monitor the flow of meningeal lymphatic system in real time is unavailable. In the present study, we adopted the high-frequency ultrasound (HFUS) with 1,1'diocatadecyl-3,3,3',3'-tetramethylindocarbocyanine perchlorate (DiI)-loaded microbubble and FePt@PLGA nanoparticle contrast agents to evaluate the flow of the meningeal lymphatic system in 2-month-old mice. Statistical analysis was performed to identify changes of HFUS signals among the microbubbles, FePt@PLGA nanoparticles, and saline control groups. Approximately 15 min from the start of intracerebroventricular injection of contrast agents, their signals were evident at the deep cervical lymph nodes and lasted for at least 60 min. These signals were validated on the basis of the presence of DiI and Fe signals in the deep cervical lymph nodes. Ligation of afferent lymphatic vessels to the deep cervical lymph nodes eliminated the HFUS signals. Moreover, ablation of lymphatic vessels near the confluence of sinuses decreased the HFUS signals in the deep cervical lymph nodes. Glioma-bearing mice that exhibited reduced lymphatic vessel immunostaining signals near the confluence of sinuses had lowered HFUS signals in the deep cervical lymph nodes within 60 min. The proposed method provides a minimally invasive approach to monitor the qualities of the meningeal lymphatic system in real time as well as the progression of the meningeal lymphatic system in various brain disease animal models.
Assuntos
Linfonodos , Vasos Linfáticos , Camundongos , Animais , Linfonodos/patologia , Meios de Contraste , Sistema Linfático/diagnóstico por imagem , Vasos Linfáticos/diagnóstico por imagem , UltrassonografiaRESUMO
The neural regulation of glucose homeostasis in normal and challenged conditions involves the modulation of pancreatic islet-cell function. Compromising the pancreas innervation causes islet autoimmunity in type 1 diabetes and islet cell dysfunction in type 2 diabetes. However, despite the richly innervated nature of the pancreas, islet innervation remains ill-defined. Here, we review the neuroanatomical and humoral basis of the cross-talk between the endocrine pancreas and autonomic and sensory neurons. Identifying the neurocircuitry and neurochemistry of the neuro-insular network would provide clues to neuromodulation-based approaches for the prevention and treatment of diabetes and obesity.
RESUMO
Accumulating evidence indicates that exercise can enhance brain function and attenuate neurodegeneration. Besides improving neuroplasticity by altering the synaptic structure and function in various brain regions, exercise also modulates multiple systems that are known to regulate neuroinflammation and glial activation. Activated microglia and several pro-inflammatory cytokines play active roles in the pathogenesis of neurodegenerative diseases, such as Alzheimer's disease and Parkinson's disease. The purpose of this review is to highlight the impacts of exercise on microglial activation. Possible mechanisms involved in exercise-modulated microglial activation are also discussed. Undoubtedly, more studies are needed in order to disclose the detailed mechanisms, but this approach offers therapeutic potential for improving the brain health of millions of aging people where pharmacological intervention has failed.