Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 13(1): 4744, 2023 03 23.
Artigo em Inglês | MEDLINE | ID: mdl-36959357

RESUMO

Multiplexed detection of biomarkers in real-time is crucial for sensitive and accurate diagnosis at the point of use. This scenario poses tremendous challenges for detection and identification of signals of varying shape and quality at the edge of the signal-to-noise limit. Here, we demonstrate a robust target identification scheme that utilizes a Deep Neural Network (DNN) for multiplex detection of single particles and molecular biomarkers. The model combines fast wavelet particle detection with Short-Time Fourier Transform analysis, followed by DNN identification on an AI-specific edge device (Google Coral Dev board). The approach is validated using multi-spot optical excitation of Klebsiella Pneumoniae bacterial nucleic acids flowing through an optofluidic waveguide chip that produces fluorescence signals of varying amplitude, duration, and quality. Amplification-free 3× multiplexing in real-time is demonstrated with excellent specificity, sensitivity, and a classification accuracy of 99.8%. These results show that a minimalistic DNN design optimized for mobile devices provides a robust framework for accurate pathogen detection using compact, low-cost diagnostic devices.


Assuntos
Aprendizado de Máquina , Ácidos Nucleicos , Fluorescência , Redes Neurais de Computação
2.
Nat Commun ; 13(1): 1035, 2022 02 24.
Artigo em Inglês | MEDLINE | ID: mdl-35210454

RESUMO

Many sensors operate by detecting and identifying individual events in a time-dependent signal which is challenging if signals are weak and background noise is present. We introduce a powerful, fast, and robust signal analysis technique based on a massively parallel continuous wavelet transform (CWT) algorithm. The superiority of this approach is demonstrated with fluorescence signals from a chip-based, optofluidic single particle sensor. The technique is more accurate than simple peak-finding algorithms and several orders of magnitude faster than existing CWT methods, allowing for real-time data analysis during sensing for the first time. Performance is further increased by applying a custom wavelet to multi-peak signals as demonstrated using amplification-free detection of single bacterial DNAs. A 4x increase in detection rate, a 6x improved error rate, and the ability for extraction of experimental parameters are demonstrated. This cluster-based CWT analysis will enable high-performance, real-time sensing when signal-to-noise is hardware limited, for instance with low-cost sensors in point of care environments.


Assuntos
Algoritmos , Análise de Ondaletas , Processamento de Sinais Assistido por Computador
3.
J Lightwave Technol ; 39(10): 3330-3340, 2021 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-34177078

RESUMO

We present a model and simulation for predicting the detected signal of a fluorescence-based optical biosensor built from optofluidic waveguides. Typical applications include flow experiments to determine pathogen concentrations in a biological sample after tagging relevant DNA or RNA sequences. An overview of the biosensor geometry and fabrication processes is presented. The basis for the predictive model is also outlined. The model is then compared to experimental results for three different biosensor designs. The model is shown to have similar signal statistics as physical tests, illustrating utility as a pre-fabrication design tool and as a predictor of detection sensitivity.

4.
Artigo em Inglês | MEDLINE | ID: mdl-33994767

RESUMO

High sensitivity and easy integration with microfabrication techniques has made silicon photonics one of the leading technologies used to build biosensors for diagnostic applications. Here we introduce a new silicon dioxide based optofluidic platform having a planar solid-core (SC) waveguide orthogonally intersecting a liquid-core (LC) waveguide with high refractive index ZnI2 salt solution as core. This enables both more uniform collection of particle fluorescence by the core mode and its propagation to an off-chip detector. This approach results in ultra-high sensitivity performance, demonstrated by achieving 8X enhancement in signal-to-noise ratio, a 45x increase in detection efficiency, and a 100x lower detection limit of 80 aM of fluorescent nanobeads. This represents a key step towards an ultrasensitive biosensor system for analyzing pathogens at clinical concentrations.

5.
Proc Natl Acad Sci U S A ; 118(20)2021 05 18.
Artigo em Inglês | MEDLINE | ID: mdl-33947795

RESUMO

The urgency for the development of a sensitive, specific, and rapid point-of-care diagnostic test has deepened during the ongoing COVID-19 pandemic. Here, we introduce an ultrasensitive chip-based antigen test with single protein biomarker sensitivity for the differentiated detection of both severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and influenza A antigens in nasopharyngeal swab samples at diagnostically relevant concentrations. The single-antigen assay is enabled by synthesizing a brightly fluorescent reporter probe, which is incorporated into a bead-based solid-phase extraction assay centered on an antibody sandwich protocol for the capture of target antigens. After optimization of the probe release for detection using ultraviolet light, the full assay is validated with both SARS-CoV-2 and influenza A antigens from clinical nasopharyngeal swab samples (PCR-negative spiked with target antigens). Spectrally multiplexed detection of both targets is implemented by multispot excitation on a multimode interference waveguide platform, and detection at 30 ng/mL with single-antigen sensitivity is reported.


Assuntos
Antígenos Virais/isolamento & purificação , Vírus da Influenza A/isolamento & purificação , Técnicas Analíticas Microfluídicas/métodos , Técnicas de Diagnóstico Molecular/métodos , SARS-CoV-2/isolamento & purificação , Antígenos Virais/imunologia , Técnicas Biossensoriais , COVID-19/diagnóstico , Fluorescência , Humanos , Vírus da Influenza A/imunologia , Influenza Humana/diagnóstico , Dispositivos Lab-On-A-Chip , Limite de Detecção , Nasofaringe/virologia , Sistemas Automatizados de Assistência Junto ao Leito , SARS-CoV-2/imunologia
6.
Artigo em Inglês | MEDLINE | ID: mdl-33390686

RESUMO

Infectious disease outbreaks such as Ebola and other Viral Hemorrhagic Fevers (VHF) require low-complexity, specific, and differentiated diagnostics as illustrated by the recent outbreak in the Democratic Republic of Congo. Here, we describe amplification-free spectrally multiplex detection of four different VHF total RNA samples using multi-spot excitation on a multimode interference waveguide platform along with combinatorial fluorescence labeling of target nucleic acids. In these experiments, we observed an average of 8-fold greater fluorescence signal amplitudes for the Ebola total RNA sample compared to three other total RNA samples: Lake Victoria Marburg Virus, Ravn Marburg Virus, and Crimean-Congo Hemorrhagic Fever. We have attributed this amplitude amplification to an increased amount of RNA during synthesis of soluble glycoprotein in infection. This hypothesis is confirmed by single molecule detection of the total RNA sample after heat-activated release from the carrier microbeads. From these experiments, we observed at least a 5.3x higher RNA mass loading on the Ebola carrier microbeads compared to the Lake Victoria Marburg carrier microbeads, which is consistent with the known production of soluble glycoprotein during infection.

7.
Biomed Opt Express ; 9(8): 3725-3730, 2018 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-30338150

RESUMO

The recent massive Zika virus (ZIKV) outbreak illustrates the need for rapid and specific diagnostic techniques. Detecting ZIKV in biological samples poses unique problems: antibody detection of ZIKV is insufficient due to cross-reactivity of Zika antibodies with other flaviviruses, and nucleic acid and protein biomarkers for ZIKV are detectable at different stages of infection. Here, we describe a new optofluidic approach for the parallel detection of different molecular biomarkers using multimode interference (MMI) waveguides. We report differentiated, multiplex detection of both ZIKV biomarker types using multi-spot excitation at two visible wavelengths with over 98% fidelity by combining several analysis techniques.

8.
Lab Chip ; 18(23): 3678-3686, 2018 12 07.
Artigo em Inglês | MEDLINE | ID: mdl-30376021

RESUMO

Detection of molecular biomarkers with high specificity and sensitivity from biological samples requires both sophisticated sample preparation and subsequent analysis. These tasks are often carried out on separate platforms which increases required sample volumes and the risk of errors, sample loss, and contamination. Here, we present an optofluidic platform which combines an optical detection section with single nucleic acid strand sensitivity, and a sample processing unit capable of on-chip, specific extraction and labeling of nucleic acid and protein targets in complex biological matrices. First, on-chip labeling and detection of individual lambda DNA molecules down to concentrations of 8 fM is demonstrated. Subsequently, we demonstrate the simultaneous capture, fluorescence tagging and detection of both Zika specific nucleic acid and NS-1 protein targets in both buffer and human serum. We show that the dual DNA and protein assay allows for successful differentiation and diagnosis of Zika against cross-reacting species like dengue.


Assuntos
Métodos Analíticos de Preparação de Amostras/instrumentação , Diagnóstico , Dispositivos Lab-On-A-Chip , Dispositivos Ópticos , DNA Viral/sangue , Dimetilpolisiloxanos/química , Desenho de Equipamento , Humanos , Limite de Detecção , Nylons/química , Zika virus/genética
9.
IEEE Photonics Technol Lett ; 30(16): 1487-1490, 2018 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-30618484

RESUMO

Multimode interference (MMI) waveguides can be used to create wavelength-dependent spot patterns which enables simultaneous analyte detection on a single optofluidic chip, useful for disease diagnostics. The fidelity of such multi-spot patterns is important for high sensitivity and accurate target identification. Buried rib structures have been incorporated into these SiO2-based waveguides to improve environmental stability. Through experiments and simulation, this letter explores design parameters for a buried MMI rib waveguide based on anti-resonant reflecting optical waveguides in order to produce high-fidelity spot patterns. Optimal rib heights and widths are reported in the context of available microfabrication etch technology and performance for an optimized biosensor is shown.

10.
Micromachines (Basel) ; 8(8)2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-29201455

RESUMO

Optofluidic, lab-on-a-chip fluorescence sensors were fabricated using buried anti-resonant reflecting optical waveguides (bARROWs). The bARROWs are impervious to the negative water absorption effects that typically occur in waveguides made using hygroscopic, plasma-enhanced chemical vapor deposition (PECVD) oxides. These sensors were used to detect fluorescent microbeads and had an average signal-to-noise ratio (SNR) that was 81.3% higher than that of single-oxide ARROW fluorescence sensors. While the single-oxide ARROW sensors were annealed at 300 °C to drive moisture out of the waveguides, the bARROW sensors required no annealing process to obtain a high SNR.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA