Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
3.
Front Immunol ; 14: 1121973, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37026005

RESUMO

Recurrent disease emerges in the majority of patients with ovarian cancer (OVCA). Adoptive T-cell therapies with T-cell receptors (TCRs) targeting tumor-associated antigens (TAAs) are considered promising solutions for less-immunogenic 'cold' ovarian tumors. In order to treat a broader patient population, more TCRs targeting peptides derived from different TAAs binding in various HLA class I molecules are essential. By performing a differential gene expression analysis using mRNA-seq datasets, PRAME, CTCFL and CLDN6 were selected as strictly tumor-specific TAAs, with high expression in ovarian cancer and at least 20-fold lower expression in all healthy tissues of risk. In primary OVCA patient samples and cell lines we confirmed expression and identified naturally expressed TAA-derived peptides in the HLA class I ligandome. Subsequently, high-avidity T-cell clones recognizing these peptides were isolated from the allo-HLA T-cell repertoire of healthy individuals. Three PRAME TCRs and one CTCFL TCR of the most promising T-cell clones were sequenced, and transferred to CD8+ T cells. The PRAME TCR-T cells demonstrated potent and specific antitumor reactivity in vitro and in vivo. The CTCFL TCR-T cells efficiently recognized primary patient-derived OVCA cells, and OVCA cell lines treated with demethylating agent 5-aza-2'-deoxycytidine (DAC). The identified PRAME and CTCFL TCRs are promising candidates for the treatment of patients with ovarian cancer, and are an essential addition to the currently used HLA-A*02:01 restricted PRAME TCRs. Our selection of differentially expressed genes, naturally expressed TAA peptides and potent TCRs can improve and broaden the use of T-cell therapies for patients with ovarian cancer or other PRAME or CTCFL expressing cancers.


Assuntos
Neoplasias Ovarianas , Receptores de Antígenos de Linfócitos T , Humanos , Feminino , Antígenos de Neoplasias , Linfócitos T CD8-Positivos , Neoplasias Ovarianas/terapia , Neoplasias Ovarianas/metabolismo , Peptídeos/metabolismo , Proteínas de Ligação a DNA/metabolismo
4.
J Hematol Oncol ; 16(1): 16, 2023 02 27.
Artigo em Inglês | MEDLINE | ID: mdl-36850001

RESUMO

BACKGROUND: The immunoglobulin J chain (Jchain) is highly expressed in the majority of multiple myeloma (MM), and Jchain-derived peptides presented in HLA molecules may be suitable antigens for T-cell therapy of MM. METHODS: Using immunopeptidomics, we identified Jchain-derived epitopes presented by MM cells, and pHLA tetramer technology was used to isolate Jchain-specific T-cell clones. RESULTS: We identified T cells specific for Jchain peptides presented in HLA-A1, -A24, -A3, and -A11 that recognized and lysed JCHAIN-positive MM cells. TCRs of the most promising T-cell clones were sequenced, cloned into retroviral vectors, and transferred to CD8 T cells. Jchain TCR T cells recognized target cells when JCHAIN and the appropriate HLA restriction alleles were expressed, while JCHAIN or HLA-negative cells, including healthy subsets, were not recognized. Patient-derived JCHAIN-positive MM samples were also lysed by Jchain TCR T cells. In a preclinical in vivo model for established MM, Jchain-A1, -A24, -A3, and -A11 TCR T cells strongly eradicated MM cells, which resulted in 100-fold lower tumor burden in Jchain TCR versus control-treated mice. CONCLUSIONS: We identified TCRs targeting Jchain-derived peptides presented in four common HLA alleles. All four TCRs demonstrated potent preclinical anti-myeloma activity, encouraging further preclinical testing and ultimately clinical development.


Assuntos
Cadeias J de Imunoglobulina , Mieloma Múltiplo , Animais , Camundongos , Mieloma Múltiplo/terapia , Receptores de Antígenos de Linfócitos T/genética , Alelos , Linfócitos T CD8-Positivos
5.
Mol Ther Oncolytics ; 28: 1-14, 2023 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-36589698

RESUMO

To increase the number of cancer patients that can be treated with T cell receptor (TCR) gene therapy, we aimed to identify a set of high-affinity cancer-specific TCRs targeting different melanoma-associated antigens (MAGEs). In this study, peptides derived from MAGE genes with tumor-specific expression pattern were identified by human leukocyte antigen (HLA) peptidomics. Next, peptide-HLA tetramers were generated, and used to sort MAGE-specific CD8+ T cell clones from the allogeneic (allo) HLA repertoire of healthy donors. To evaluate the clinical potential, most potent TCRs were sequenced, transferred into peripheral blood-derived CD8+ T cells, and tested for antitumor efficacy. In total we identified, seven MAGE-specific TCRs that effectively target MAGE-A1, MAGE-A3, MAGE-A6, and MAGE-A9 in the context of HLA-A∗01:01, -A∗02:01, -A∗03:01, -B∗07:02, -B∗35:01, or -C∗07:02. TCR gene transfer into CD8⁺ T cells resulted in efficient reactivity against a variety of different tumor types, while no cross-reactivity was detected. In addition, major in vivo antitumor effects of MAGE-A1 specific TCR engineered CD8⁺ T cells were observed in the orthotopic xenograft model for established multiple myeloma. The identification of seven MAGE-specific TCRs expands the pool of cancer patients eligible for TCR gene therapy and increases possibilities for personalized TCR gene therapy.

6.
J Immunol ; 208(8): 1851-1856, 2022 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-35379743

RESUMO

Unconventional HLA class I-restricted CD8+ T cell epitopes, longer than 10 aa, have been implicated to play a role in human immunity against viruses and cancer. T cell recognition of long peptides, centrally bulging from the HLA cleft, has been described previously. Alternatively, long peptides can contain a linear HLA-bound core peptide, with a N- or C-terminal peptide "tail" extending from the HLA peptide binding groove. The role of such a peptide "tail" in CD8+ T cell recognition remains unclear. In this study, we identified a 20mer peptide (FLPTPEELGLLGPPRPQVLA [FLP]) derived from the IL-27R subunit α gene restricted to HLA-A*02:01, for which we solved the crystal structure and demonstrated a long C-terminal "tail" extension. FLP-specific T cell clones demonstrated various recognition modes, some T cells recognized the FLP core peptide, while for other T cells the peptide tail was essential for recognition. These results demonstrate a crucial role for a C-terminal peptide tail in immunogenicity.


Assuntos
Linfócitos T CD8-Positivos , Epitopos de Linfócito T , Antígeno HLA-A2 , Linfócitos T CD8-Positivos/imunologia , Epitopos de Linfócito T/genética , Epitopos de Linfócito T/imunologia , Genes MHC Classe I/genética , Genes MHC Classe I/imunologia , Antígenos HLA-A/genética , Antígenos HLA-A/imunologia , Antígeno HLA-A2/genética , Antígeno HLA-A2/imunologia , Humanos , Peptídeos/genética , Peptídeos/imunologia
7.
J Immunother Cancer ; 10(3)2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35264435

RESUMO

BACKGROUND: Cross-presentation of exogenous antigens in HLA-class I molecules by professional antigen presenting cells (APCs) is crucial for CD8+ T cell function. Recent murine studies show that several non-professional APCs, including cancer-associated fibroblasts (CAFs) also possess this capacity. Whether human CAFs are able to cross-present exogenous antigen, which molecular pathways are involved in this process and how this ultimately affects tumor-specific CD8+ T cell function is unknown. METHODS: In this study, we investigated the ability of human colorectal cancer (CRC)-derived CAFs to cross-present neoantigen-derived synthetic long peptides (SLPs), corresponding to tumor-derived mutant peptides, and how this affects tumor-specific T-cell function. Processing of the SLP was studied by targeting components of the cross-presentation machinery through CRISPR/Cas9 and siRNA-mediated genetic ablation to identify the key molecules involved in fibroblast-mediated cross-presentation. Multispectral flow cytometry and killing assays were performed to study the effect of fibroblast cross-presentation on T cell function. RESULTS: Here, we show that human CRC-derived CAFs display an enhanced capacity to cross-present neoantigen-derived SLPs when compared with normal colonic fibroblasts. Cross-presentation of antigens by fibroblasts involved the lysosomal protease cathepsin S. Cathepsin S expression by CAFs was detected in situ in human CRC tissue, was upregulated in ex vivo cultured CRC-derived CAFs and showed increased expression in normal fibroblasts after exposure to CRC-conditioned medium. Cognate interaction between CD8+ T cells and cross-presenting CAFs suppressed T cell function, reflected by decreased cytotoxicity, reduced activation (CD137) and increased exhaustion (TIM3, LAG3 and CD39) marker expression. CONCLUSION: These data indicate that CAFs may directly suppress tumor-specific T cell function in an antigen-dependent fashion in human CRC.


Assuntos
Fibroblastos Associados a Câncer , Neoplasias Colorretais , Animais , Fibroblastos Associados a Câncer/metabolismo , Catepsinas , Neoplasias Colorretais/genética , Apresentação Cruzada , Humanos , Lisossomos/metabolismo , Camundongos , Peptídeo Hidrolases/genética , Peptídeo Hidrolases/metabolismo , Regulação para Cima
8.
J Immunother Cancer ; 10(3)2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35288464

RESUMO

BACKGROUND: T cell receptor (TCR)-engineered cells can be powerful tools in the treatment of malignancies. However, tumor resistance by Human Leukocyte antigen (HLA) class I downregulation can negatively impact the success of any TCR-mediated cell therapy. Allogeneic natural killer (NK) cells have demonstrated efficacy and safety against malignancies without inducing graft-versus-host-disease, highlighting the feasibility for an 'off the shelf' cellular therapeutic. Furthermore, primary NK cells can target tumors using a broad array of intrinsic activation mechanisms. In this study, we combined the antitumor effector functions of NK cells with TCR engineering (NK-TCR), creating a novel therapeutic strategy to avoid TCR-associated immune resistance. METHODS: BOB1, is a transcription factor highly expressed in all healthy and malignant B cell lineages, including multiple myeloma (MM). Expression of an HLA-B*07:02 restricted BOB1-specifc TCR in peripheral blood-derived NK cells was achieved following a two-step retroviral transduction protocol. NK-TCR was then compared with TCR-negative NK cells and CD8-T cells expressing the same TCR for effector function against HLA-B*07:02+ B-cell derived lymphoblastoid cell lines (B-LCL), B-cell acute lymphoblastic leukemia and MM cell lines in vitro and in vivo. RESULTS: Firstly, TCR could be reproducibly expressed in NK cells isolated from the peripheral blood of multiple healthy donors generating pure NK-TCR cell products. Secondly, NK-TCR demonstrated antigen-specific effector functions against malignancies which were previously resistant to NK-mediated lysis and enhanced NK efficacy in vivo using a preclinical xenograft model of MM. Moreover, antigen-specific cytotoxicity and cytokine production of NK-TCR was comparable to CD8 T cells expressing the same TCR. Finally, in a model of HLA-class I loss, tumor cells with B2M KO were lysed by NK-TCR in an NK-mediated manner but were resistant to T-cell based killing. CONCLUSION: NK-TCR cell therapy enhances NK cell efficacy against tumors through additional TCR-mediated lysis. Furthermore, the dual efficacy of NK-TCR permits the specific targeting of tumors and the associated TCR-associated immune resistance, making NK-TCR a unique cellular therapeutic.


Assuntos
Mieloma Múltiplo , Evasão Tumoral , Antígenos de Histocompatibilidade Classe I , Humanos , Células Matadoras Naturais , Receptores de Antígenos de Linfócitos T/genética
9.
Oncoimmunology ; 11(1): 2033528, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35127255

RESUMO

Chimeric antigen receptor (CAR) T cell therapies have resulted in profound clinical responses in the treatment of CD19-positive hematological malignancies, but a significant proportion of patients do not respond or relapse eventually. As an alternative to CAR T cells, T cells can be engineered to express a tumor-targeting T cell receptor (TCR). Due to HLA restriction of TCRs, CARs have emerged as a preferred treatment moiety when targeting surface antigens, despite the fact that functional differences between engineered TCR (eTCR) T and CAR T cells remain ill-defined. Here, we compared the activity of CAR T cells versus engineered TCR T cells in targeting the B cell malignancy-associated antigen CD20 as a function of antigen exposure. We found CAR T cells to be more potent effector cells, producing higher levels of cytokines and killing more efficiently than eTCR T cells in a short time frame. However, we revealed that the increase of antigen exposure significantly impaired CAR T cell expansion, a phenotype defined by high expression of coinhibitory molecules and effector differentiation. In contrast, eTCR T cells expanded better than CAR T cells under high antigenic pressure, with lower expression of coinhibitory molecules and maintenance of an early differentiation phenotype, and comparable clearance of tumor cells.


Assuntos
Recidiva Local de Neoplasia , Linfócitos T , Antígenos CD20/metabolismo , Humanos , Imunoterapia Adotiva/métodos , Receptores de Antígenos de Linfócitos T/genética
10.
Mol Ther ; 30(2): 564-578, 2022 02 02.
Artigo em Inglês | MEDLINE | ID: mdl-34371177

RESUMO

CAR T cell therapy has shown great promise for the treatment of B cell malignancies. However, antigen-negative escape variants often cause disease relapse, necessitating the development of multi-antigen-targeting approaches. We propose that a T cell receptor (TCR)-based strategy would increase the number of potential antigenic targets, as peptides from both intracellular and extracellular proteins can be recognized. Here, we aimed to isolate a broad range of promising TCRs targeting multiple antigens for treatment of B cell malignancies. As a first step, 28 target genes for B cell malignancies were selected based on gene expression profiles. Twenty target peptides presented in human leukocyte antigen (HLA)-A∗01:01, -A∗24:02, -B∗08:01, or -B∗35:01 were identified from the immunopeptidome of B cell malignancies and used to form peptide-HLA (pHLA)-tetramers for T cell isolation. Target-peptide-specific CD8 T cells were isolated from HLA-mismatched healthy donors and subjected to a stringent stepwise selection procedure to ensure potency and eliminate cross-reactivity. In total, five T cell clones specific for FCRL5 in HLA-A∗01:01, VPREB3 in HLA-A∗24:02, and BOB1 in HLA-B∗35:01 recognized B cell malignancies. For all three specificities, TCR gene transfer into CD8 T cells resulted in cytokine production and efficient killing of multiple B cell malignancies. In conclusion, using this systematic approach we successfully identified three promising TCRs for T cell therapy against B cell malignancies.


Assuntos
Neoplasias , Receptores de Antígenos de Linfócitos T , Linfócitos T CD8-Positivos , Terapia Baseada em Transplante de Células e Tecidos , Humanos , Imunoterapia Adotiva/métodos , Neoplasias/terapia , Receptores de Antígenos de Linfócitos T/metabolismo
11.
Blood ; 129(10): 1284-1295, 2017 03 09.
Artigo em Inglês | MEDLINE | ID: mdl-28053195

RESUMO

Immunotherapy for hematological malignancies or solid tumors by administration of monoclonal antibodies or T cells engineered to express chimeric antigen receptors or T-cell receptors (TCRs) has demonstrated clinical efficacy. However, antigen-loss tumor escape variants and the absence of currently targeted antigens on several malignancies hamper the widespread application of immunotherapy. We have isolated a TCR targeting a peptide of the intracellular B cell-specific transcription factor BOB1 presented in the context of HLA-B*07:02. TCR gene transfer installed BOB1 specificity and reactivity onto recipient T cells. TCR-transduced T cells efficiently lysed primary B-cell leukemia, mantle cell lymphoma, and multiple myeloma in vitro. We also observed recognition and lysis of healthy BOB1-expressing B cells. In addition, strong BOB1-specific proliferation could be demonstrated for TCR-modified T cells upon antigen encounter. Furthermore, clear in vivo antitumor reactivity was observed of BOB1-specific TCR-engineered T cells in a xenograft mouse model of established multiple myeloma. Absence of reactivity toward a broad panel of BOB1- but HLA-B*07:02+ nonhematopoietic and hematopoietic cells indicated no off-target toxicity. Therefore, administration of BOB1-specific TCR-engineered T cells may provide novel cellular treatment options to patients with B-cell malignancies, including multiple myeloma.


Assuntos
Imunoterapia Adotiva/métodos , Linfoma não Hodgkin/imunologia , Mieloma Múltiplo/imunologia , Receptores de Antígenos de Linfócitos T/imunologia , Transativadores/antagonistas & inibidores , Animais , Linhagem Celular Tumoral , Citometria de Fluxo , Engenharia Genética/métodos , Humanos , Camundongos , Linfócitos T/imunologia , Ensaios Antitumorais Modelo de Xenoenxerto
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA