Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 143
Filtrar
1.
Elife ; 122024 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-39023520

RESUMO

Dormancy in cancer is a clinical state in which residual disease remains undetectable for a prolonged duration. At a cellular level, rare cancer cells cease proliferation and survive chemotherapy and disseminate disease. We created a suspension culture model of high-grade serous ovarian cancer (HGSOC) dormancy and devised a novel CRISPR screening approach to identify survival genes in this context. In combination with RNA-seq, we discovered the Netrin signaling pathway as critical to dormant HGSOC cell survival. We demonstrate that Netrin-1, -3, and its receptors are essential for low level ERK activation to promote survival, and that Netrin activation of ERK is unable to induce proliferation. Deletion of all UNC5 family receptors blocks Netrin signaling in HGSOC cells and compromises viability during the dormancy step of dissemination in xenograft assays. Furthermore, we demonstrate that Netrin-1 and -3 overexpression in HGSOC correlates with poor outcome. Specifically, our experiments reveal that Netrin overexpression elevates cell survival in dormant culture conditions and contributes to greater spread of disease in a xenograft model of abdominal dissemination. This study highlights Netrin signaling as a key mediator HGSOC cancer cell dormancy and metastasis.


High-grade serous ovarian cancer (or HGSOC for short) is the fifth leading cause of cancer-related deaths in women. It is generally diagnosed at an advanced stage of disease when the cancer has already spread to other parts of the body. Surgical removal of tumors and subsequent treatment with chemotherapy often reduces the signs and symptoms of the disease for a time but some cancer cells tend to survive so that patients eventually relapse. The HGSOC cells typically spread from the ovaries by moving through the liquid surrounding organs in the abdomen. The cells clump together and enter an inactive state known as dormancy that allows them to survive chemotherapy and low-nutrient conditions. Understanding how to develop new drug therapies that target dormant cancer cells is thought to be an important step in prolonging the life of HGSOC patients. Cancer cells are hardwired to multiply and grow, so Perampalam et al. reasoned that becoming dormant poses challenges for HGSOC cells, which may create unique vulnerabilities not shared by proliferating cancer cells. To find out more, the researchers used HGSOC cells that had been isolated from patients and grown in the laboratory. The team used a gene editing technique to screen HGSOC cells for genes required by the cells to survive when they are dormant. The experiments found that genes involved in a cell signaling pathway, known as Netrin signaling, were critical for the cells to survive. Previous studies have shown that Netrin signaling helps the nervous system form in embryos and inhibits a program of controlled cell death in some cancers. Perampalam et al. discovered that Netrins were present in the environment immediately surrounding dormant HGSOC cells. Human HGSOC patients with higher levels of Netrin gene expression had poorer prognoses than patients with lower levels of Netrin gene expression. Further experiments demonstrated that Netrins help dormant HGSOC cells to spread around the body. These findings suggest that Netrin signalling may provide useful targets for future drug therapies against dormant cells in some ovarian cancers. This could include repurposing drugs already in development or creating new inhibitors of this pathway.


Assuntos
Carcinoma Epitelial do Ovário , Sobrevivência Celular , Netrinas , Neoplasias Ovarianas , Transdução de Sinais , Humanos , Feminino , Animais , Linhagem Celular Tumoral , Carcinoma Epitelial do Ovário/genética , Carcinoma Epitelial do Ovário/metabolismo , Carcinoma Epitelial do Ovário/patologia , Neoplasias Ovarianas/genética , Neoplasias Ovarianas/patologia , Neoplasias Ovarianas/metabolismo , Netrinas/metabolismo , Netrinas/genética , Camundongos , Netrina-1/metabolismo , Netrina-1/genética , Proliferação de Células , Receptores de Netrina/metabolismo , Receptores de Netrina/genética
2.
Biomater Adv ; 161: 213881, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38749213

RESUMO

Nanoparticle's success as drug delivery systems for cancer treatment has been achieved through passive targeting mechanisms. However, tumor heterogeneity and rapid drug clearance limit the treatment efficacy. Improved outcomes and selective drug release can be achieved by grafting ligands at the surface of nanocarriers that bind molecules overexpressed in the tumor microenvironment (TME). In this work, we developed a docetaxel-loaded nanoemulsions (NEs) binding an anti-netrin-1 monoclonal antibody (NP137) to selectively target the netrin-1 protein overexpressed in many different tumors. The goal is to refine a combined approach utilizing NP137 and docetaxel as an improved tumor-targeting chemotherapeutic agent for addressing triple-negative breast cancer (TNBC). Several factors have been considered for the optimization of the active targeted drug delivery system via the click-chemistry conjugation, as the impact of PEGylated surfactant that stabilize the NEs shell on conjugation efficiency, cytocompatibility with EMT6 cell line and colloidal stability over time of NEs. Results showed that a 660 Da PEG chain length contributed to NEs colloidal stability and had no impact on cell viability or on the antibody binding ability for its ligand after surface conjugation. Moreover, docetaxel was encapsulated into the oily core of NEs, with an encapsulation efficiency of 70 %. To validate our treatment strategy in vivo, the 4T1 murine breast cancer model was used. As a result, the comparison of active-targeted and non-targeted NEs revealed that only active-targeted NE could decrease the tumor growth rate.


Assuntos
Docetaxel , Nanopartículas , Neoplasias de Mama Triplo Negativas , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Neoplasias de Mama Triplo Negativas/patologia , Animais , Feminino , Nanopartículas/química , Linhagem Celular Tumoral , Camundongos , Docetaxel/farmacologia , Docetaxel/uso terapêutico , Docetaxel/administração & dosagem , Humanos , Antineoplásicos/farmacologia , Antineoplásicos/administração & dosagem , Antineoplásicos/química , Antineoplásicos/uso terapêutico , Anticorpos Monoclonais/farmacologia , Anticorpos Monoclonais/administração & dosagem , Anticorpos Monoclonais/uso terapêutico
3.
Endocr Relat Cancer ; 31(6)2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38642579

RESUMO

Neuropilin 2 (NRP2), a transmembrane non-tyrosine kinase receptor, has been described as a potential critical player in the tumourigenesis of several solid cancers and particularly in neuroendocrine neoplasms (NENs). A soluble form of NRP2 (sNRP2) has been previously described and corresponds to a truncated splice isoform. Its prognostic value has never been studied in NEN. NRP2 expression was studied by immunochemistry on tissue microarrays (n = 437) and on circulating tumour cells (CTCs, n = 5 patients with neuroendocrine carcinoma, NEC). We described the levels of sNRP2 in 229 patients with NEN using the ELISA method to identify the factors associated with sNRP2 levels and to evaluate its prognostic role; 90 blood donors represented the healthy control group. NRP2 was found in 97% of neuroendocrine tumours (396/410) and in 74% of NEC (20/27). NRP2 was also expressed in CTC of all the studied patients. The receiver operating characteristic (ROC) analysis showed that sNRP2 had a weak capacity to discriminate between NEN patients and healthy controls (area under curve (AUC) = 0.601, P = 0.053). Abnormal sNRP2 levels were associated with inflammatory syndrome, bone and peritoneal metastases, and abnormal chromogranin A levels. Patients with high sNRP2 levels (sNRP2Q3-Q4) had significantly poorer overall survival in multivariate analysis (HR 0.16, 95% CI (0.04-0.67), P = 0.015). In conclusion, the present study found that sNRP2 and NRP2 could represent a new prognostic biomarker and a therapeutic target, respectively, particularly in aggressive NEN.


Assuntos
Biomarcadores Tumorais , Tumores Neuroendócrinos , Neuropilina-2 , Humanos , Feminino , Neuropilina-2/metabolismo , Neuropilina-2/genética , Masculino , Pessoa de Meia-Idade , Tumores Neuroendócrinos/metabolismo , Tumores Neuroendócrinos/patologia , Tumores Neuroendócrinos/sangue , Idoso , Adulto , Biomarcadores Tumorais/metabolismo , Prognóstico , Células Neoplásicas Circulantes/metabolismo , Células Neoplásicas Circulantes/patologia , Idoso de 80 Anos ou mais , Adulto Jovem
4.
Exp Mol Med ; 56(3): 700-710, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38486106

RESUMO

Inflammation plays a crucial role in cancer progression, but the relevance of the inflammasome remains unclear. Alu RNA was the first endogenous nucleic acid shown to activate the NLRP3 (nucleotide-binding domain leucine-rich repeat containing 3) inflammasome. Here, we showed that Alu RNA can induce epithelial-to-mesenchymal transition (EMT) through NLRP3 inflammasome activation and IL-1ß release in colorectal cancer (CRC) cells. Alu RNA is stored, transported and transferred to CRC cells by exosomes. Exosomal Alu RNA promotes tumorigenesis by inducing invasion, metastasis and EMT via NLRP3 inflammasome activation. Consistent with these data, we found that significantly increased Alu RNA expression correlates with the induction of NLRP3 priming in human CRC patients. Furthermore, the level of Alu RNA in circulating exosomes correlates with CRC progression in a preclinical model. These findings reveal the direct involvement of Alu RNA in cancer pathogenesis, and its presence in CRC cell-derived exosomes could be used as a noninvasive diagnostic biomarker.


Assuntos
Neoplasias Colorretais , Exossomos , Humanos , RNA/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Inflamassomos/metabolismo , Carcinogênese/metabolismo , Neoplasias Colorretais/metabolismo , Exossomos/metabolismo
6.
Cell Rep ; 42(11): 113369, 2023 11 28.
Artigo em Inglês | MEDLINE | ID: mdl-37922311

RESUMO

The biology of metastatic pancreatic ductal adenocarcinoma (PDAC) is distinct from that of the primary tumor due to changes in cell plasticity governed by a distinct transcriptome. Therapeutic strategies that target this distinct biology are needed. We detect an upregulation of the neuronal axon guidance molecule Netrin-1 in PDAC liver metastases that signals through its dependence receptor (DR), uncoordinated-5b (Unc5b), to facilitate metastasis in vitro and in vivo. The mechanism of Netrin-1 induction involves a feedforward loop whereby Netrin-1 on the surface of PDAC-secreted extracellular vesicles prepares the metastatic niche by inducing hepatic stellate cell activation and retinoic acid secretion that in turn upregulates Netrin-1 in disseminated tumor cells via RAR/RXR and Elf3 signaling. While this mechanism promotes PDAC liver metastasis, it also identifies a therapeutic vulnerability, as it can be targeted using anti-Netrin-1 therapy to inhibit metastasis using the Unc5b DR cell death mechanism.


Assuntos
Carcinoma Ductal Pancreático , Neoplasias Hepáticas , Neoplasias Pancreáticas , Humanos , Netrina-1 , Retinoides , Células Estreladas do Fígado/metabolismo , Linhagem Celular Tumoral , Neoplasias Pancreáticas/patologia , Carcinoma Ductal Pancreático/patologia , Neoplasias Hepáticas/metabolismo , Receptores de Netrina , Proteínas de Ligação a DNA , Fatores de Transcrição , Proteínas Proto-Oncogênicas c-ets
7.
Front Cell Dev Biol ; 11: 1231416, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37860822

RESUMO

Cancer cell heterogeneity is a key contributor to therapeutic failure and post-treatment recurrence. Targeting cell subpopulations responsible for chemoresistance and recurrence seems to be an attractive approach to improve treatment outcome in cancer patients. However, this remains challenging due to the complexity and incomplete characterization of tumor cell subpopulations. The heterogeneity of cells exhibiting stemness-related features, such as self-renewal and chemoresistance, fuels this complexity. Notch signaling is a known regulator of cancer stem cell (CSC) features in colorectal cancer (CRC), though the effects of its heterogenous signaling on CRC cell stemness are only just emerging. In this review, we discuss how Notch ligand-receptor specificity contributes to regulating stemness, self-renewal, chemoresistance and cancer stem cells heterogeneity in CRC.

9.
Cell Death Differ ; 30(10): 2201-2212, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37633969

RESUMO

Drug resistance and cancer relapse represent significant therapeutic challenges after chemotherapy or immunotherapy, and a major limiting factor for long-term cancer survival. Netrin-1 was initially identified as a neuronal navigation cue but has more recently emerged as an interesting target for cancer therapy, which is currently clinically investigated. We show here that netrin-1 is an independent prognostic marker for clinical progression of breast and ovary cancers. Cancer stem cells (CSCs)/Tumor initiating cells (TICs) are hypothesized to be involved in clinical progression, tumor relapse and resistance. We found a significant correlation between netrin-1 expression and cancer stem cell (CSC) markers levels. We also show in different mice models of resistance to chemotherapies that netrin-1 interference using a therapeutic netrin-1 blocking antibody alleviates resistance to chemotherapy and triggers an efficient delay in tumor relapse and this effect is associated with CSCs loss. We also demonstrate that netrin-1 interference limits tumor resistance to immune checkpoint inhibitor and provide evidence linking this enhanced anti-tumor efficacy to a decreased recruitment of a subtype of myeloid-derived suppressor cells (MDSCs) called polymorphonuclear (PMN)-MDSCs. We have functionally demonstrated that these immune cells promote CSCs features and, consequently, resistance to anti-cancer treatments. Together, these data support the view of both a direct and indirect contribution of netrin-1 to cancer stemness and we propose that this may lead to therapeutic opportunities by combining conventional chemotherapies and immunotherapies with netrin-1 interfering drugs.

10.
Nature ; 620(7973): 402-408, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37532929

RESUMO

Epithelial-to-mesenchymal transition (EMT) regulates tumour initiation, progression, metastasis and resistance to anti-cancer therapy1-7. Although great progress has been made in understanding the role of EMT and its regulatory mechanisms in cancer, no therapeutic strategy to pharmacologically target EMT has been identified. Here we found that netrin-1 is upregulated in a primary mouse model of skin squamous cell carcinoma (SCC) exhibiting spontaneous EMT. Pharmacological inhibition of netrin-1 by administration of NP137, a netrin-1-blocking monoclonal antibody currently used in clinical trials in human cancer (ClinicalTrials.gov identifier NCT02977195 ), decreased the proportion of EMT tumour cells in skin SCC, decreased the number of metastases and increased the sensitivity of tumour cells to chemotherapy. Single-cell RNA sequencing revealed the presence of different EMT states, including epithelial, early and late hybrid EMT, and full EMT states, in control SCC. By contrast, administration of NP137 prevented the progression of cancer cells towards a late EMT state and sustained tumour epithelial states. Short hairpin RNA knockdown of netrin-1 and its receptor UNC5B in EPCAM+ tumour cells inhibited EMT in vitro in the absence of stromal cells and regulated a common gene signature that promotes tumour epithelial state and restricts EMT. To assess the relevance of these findings to human cancers, we treated mice transplanted with the A549 human cancer cell line-which undergoes EMT following TGFß1 administration8,9-with NP137. Netrin-1 inhibition decreased EMT in these transplanted A549 cells. Together, our results identify a pharmacological strategy for targeting EMT in cancer, opening up novel therapeutic interventions for anti-cancer therapy.


Assuntos
Anticorpos Monoclonais , Carcinoma de Células Escamosas , Transição Epitelial-Mesenquimal , Netrina-1 , Neoplasias Cutâneas , Animais , Humanos , Camundongos , Células A549 , Carcinoma de Células Escamosas/tratamento farmacológico , Carcinoma de Células Escamosas/patologia , Linhagem Celular Tumoral , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Receptores de Netrina/antagonistas & inibidores , Receptores de Netrina/deficiência , Receptores de Netrina/genética , Netrina-1/antagonistas & inibidores , Netrina-1/deficiência , Netrina-1/genética , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/farmacologia , Modelos Animais de Doenças , Neoplasias Cutâneas/tratamento farmacológico , Neoplasias Cutâneas/patologia , Anticorpos Monoclonais/farmacologia , Anticorpos Monoclonais/uso terapêutico , Metástase Neoplásica/tratamento farmacológico , Análise da Expressão Gênica de Célula Única , RNA-Seq , Molécula de Adesão da Célula Epitelial/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto , Fator de Crescimento Transformador beta1/farmacologia
11.
Nature ; 620(7973): 409-416, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37532934

RESUMO

Netrin-1 is upregulated in cancers as a protumoural mechanism1. Here we describe netrin-1 upregulation in a majority of human endometrial carcinomas (ECs) and demonstrate that netrin-1 blockade, using an anti-netrin-1 antibody (NP137), is effective in reduction of tumour progression in an EC mouse model. We next examined the efficacy of NP137, as a first-in-class single agent, in a Phase I trial comprising 14 patients with advanced EC. As best response we observed 8 stable disease (8 out of 14, 57.1%) and 1 objective response as RECIST v.1.1 (partial response, 1 out of 14 (7.1%), 51.16% reduction in target lesions at 6 weeks and up to 54.65% reduction during the following 6 months). To evaluate the NP137 mechanism of action, mouse tumour gene profiling was performed, and we observed, in addition to cell death induction, that NP137 inhibited epithelial-to-mesenchymal transition (EMT). By performing bulk RNA sequencing (RNA-seq), spatial transcriptomics and single-cell RNA-seq on paired pre- and on-treatment biopsies from patients with EC from the NP137 trial, we noted a net reduction in tumour EMT. This was associated with changes in immune infiltrate and increased interactions between cancer cells and the tumour microenvironment. Given the importance of EMT in resistance to current standards of care2, we show in the EC mouse model that a combination of NP137 with carboplatin-paclitaxel outperformed carboplatin-paclitaxel alone. Our results identify netrin-1 blockade as a clinical strategy triggering both tumour debulking and EMT inhibition, thus potentially alleviating resistance to standard treatments.


Assuntos
Neoplasias do Endométrio , Transição Epitelial-Mesenquimal , Netrina-1 , Animais , Feminino , Humanos , Camundongos , Biópsia , Carboplatina/administração & dosagem , Carboplatina/farmacologia , Carboplatina/uso terapêutico , Modelos Animais de Doenças , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Neoplasias do Endométrio/tratamento farmacológico , Neoplasias do Endométrio/genética , Neoplasias do Endométrio/imunologia , Neoplasias do Endométrio/patologia , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Perfilação da Expressão Gênica , Netrina-1/antagonistas & inibidores , Paclitaxel/administração & dosagem , Paclitaxel/farmacologia , Paclitaxel/uso terapêutico , RNA-Seq , Análise da Expressão Gênica de Célula Única , Microambiente Tumoral/efeitos dos fármacos
12.
Cell Rep ; 42(8): 112947, 2023 08 29.
Artigo em Inglês | MEDLINE | ID: mdl-37572323

RESUMO

The molecular code that controls synapse formation and maintenance in vivo has remained quite sparse. Here, we identify that the secreted protein Adamtsl3 functions as critical hippocampal synapse organizer acting through the transmembrane receptor DCC (deleted in colorectal cancer). Traditionally, DCC function has been associated with glutamatergic synaptogenesis and plasticity in response to Netrin-1 signaling. We demonstrate that early post-natal deletion of Adamtsl3 in neurons impairs DCC protein expression, causing reduced density of both glutamatergic and GABAergic synapses. Adult deletion of Adamtsl3 in either GABAergic or glutamatergic neurons does not interfere with DCC-Netrin-1 function at glutamatergic synapses but controls DCC signaling at GABAergic synapses. The Adamtsl3-DCC signaling unit is further essential for activity-dependent adaptations at GABAergic synapses, involving DCC phosphorylation and Src kinase activation. These findings might be particularly relevant for schizophrenia because genetic variants in Adamtsl3 and DCC have been independently linked with schizophrenia in patients.


Assuntos
Neurônios , Sinapses , Humanos , Receptor DCC/metabolismo , Netrina-1/metabolismo , Neurônios/metabolismo , Transdução de Sinais , Quinases da Família src/metabolismo , Sinapses/metabolismo , Animais
13.
Trends Cancer ; 9(9): 693-696, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37357110

RESUMO

Recently, a holistic approach to oncology that integrates a whole-body understanding of the etiology and dynamics of cancer and the development of new therapies has been proposed. Herein we discuss how this concept is also relevant to pediatric oncology, with the caveat of specificities that must be considered.


Assuntos
Oncologia , Neoplasias , Criança , Humanos , Neoplasias/genética , Neoplasias/terapia
14.
J Neurosci ; 43(29): 5414-5430, 2023 07 19.
Artigo em Inglês | MEDLINE | ID: mdl-37286351

RESUMO

Multiple myeloma (MM) is a neoplasia of B plasma cells that often induces bone pain. However, the mechanisms underlying myeloma-induced bone pain (MIBP) are mostly unknown. Using a syngeneic MM mouse model, we show that periosteal nerve sprouting of calcitonin gene-related peptide (CGRP+) and growth associated protein 43 (GAP43+) fibers occurs concurrent to the onset of nociception and its blockade provides transient pain relief. MM patient samples also showed increased periosteal innervation. Mechanistically, we investigated MM induced gene expression changes in the dorsal root ganglia (DRG) innervating the MM-bearing bone of male mice and found alterations in pathways associated with cell cycle, immune response and neuronal signaling. The MM transcriptional signature was consistent with metastatic MM infiltration to the DRG, a never-before described feature of the disease that we further demonstrated histologically. In the DRG, MM cells caused loss of vascularization and neuronal injury, which may contribute to late-stage MIBP. Interestingly, the transcriptional signature of a MM patient was consistent with MM cell infiltration to the DRG. Overall, our results suggest that MM induces a plethora of peripheral nervous system alterations that may contribute to the failure of current analgesics and suggest neuroprotective drugs as appropriate strategies to treat early onset MIBP.SIGNIFICANCE STATEMENT Multiple myeloma (MM) is a painful bone marrow cancer that significantly impairs the quality of life of the patients. Analgesic therapies for myeloma-induced bone pain (MIBP) are limited and often ineffective, and the mechanisms of MIBP remain unknown. In this manuscript, we describe cancer-induced periosteal nerve sprouting in a mouse model of MIBP, where we also encounter metastasis to the dorsal root ganglia (DRG), a never-before described feature of the disease. Concomitant to myeloma infiltration, the lumbar DRGs presented blood vessel damage and transcriptional alterations, which may mediate MIBP. Explorative studies on human tissue support our preclinical findings. Understanding the mechanisms of MIBP is crucial to develop targeted analgesic with better efficacy and fewer side effects for this patient population.


Assuntos
Doenças Ósseas , Mieloma Múltiplo , Tecido Nervoso , Humanos , Camundongos , Masculino , Animais , Mieloma Múltiplo/complicações , Mieloma Múltiplo/metabolismo , Mieloma Múltiplo/patologia , Qualidade de Vida , Dor/metabolismo , Tecido Nervoso/metabolismo , Tecido Nervoso/patologia , Gânglios Espinais/metabolismo
15.
EMBO Mol Med ; 15(4): e16732, 2023 04 11.
Artigo em Inglês | MEDLINE | ID: mdl-36876343

RESUMO

Targeted radionuclide therapy is a revolutionary tool for the treatment of highly spread metastatic cancers. Most current approaches rely on the use of vectors to deliver radionuclides to tumor cells, targeting membrane-bound cancer-specific moieties. Here, we report the embryonic navigation cue netrin-1 as an unanticipated target for vectorized radiotherapy. While netrin-1, known to be re-expressed in tumoral cells to promote cancer progression, is usually characterized as a diffusible ligand, we demonstrate here that netrin-1 is actually poorly diffusible and bound to the extracellular matrix. A therapeutic anti-netrin-1 monoclonal antibody (NP137) has been preclinically developed and was tested in various clinical trials showing an excellent safety profile. In order to provide a companion test detecting netrin-1 in solid tumors and allowing the selection of therapy-eligible patients, we used the clinical-grade NP137 agent and developed an indium-111-NODAGA-NP137 single photon emission computed tomography (SPECT) contrast agent. NP137-111 In provided specific detection of netrin-1-positive tumors with an excellent signal-to-noise ratio using SPECT/CT imaging in different mouse models. The high specificity and strong affinity of NP137 paved the way for the generation of lutetium-177-DOTA-NP137, a novel vectorized radiotherapy, which specifically accumulated in netrin-1-positive tumors. We demonstrate here, using tumor cell-engrafted mouse models and a genetically engineered mouse model, that a single systemic injection of NP137-177 Lu provides important antitumor effects and prolonged mouse survival. Together, these data support the view that NP137-111 In and NP137-177 Lu may represent original and unexplored imaging and therapeutic tools against advanced solid cancers.


Assuntos
Neoplasias , Radioimunoterapia , Animais , Camundongos , Linhagem Celular Tumoral , Neoplasias/diagnóstico por imagem , Neoplasias/radioterapia , Radioimunoterapia/métodos , Tomografia Computadorizada de Emissão de Fóton Único , Tomografia Computadorizada por Raios X , Netrina-1/metabolismo
16.
Cell Death Dis ; 14(2): 171, 2023 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-36854682

RESUMO

Notch signaling is a conserved signaling pathway that participates in many aspects of mammary gland development and homeostasis, and has extensively been associated with breast tumorigenesis. Here, to unravel the as yet debated role of Notch3 in breast cancer development, we investigated its expression in human breast cancer samples and effects of its loss in mice. Notch3 expression was very weak in breast cancer cells and was associated with good patient prognosis. Interestingly, its expression was very strong in stromal cells of these patients, though this had no prognostic value. Mechanistically, we demonstrated that Notch3 prevents tumor initiation via HeyL-mediated inhibition of Mybl2, an important regulator of cell cycle. In the mammary glands of Notch3-deficient mice, we observed accelerated tumor initiation and proliferation in a MMTV-Neu model. Notch3-null tumors were enriched in Mybl2 mRNA signature and protein expression. Hence, our study reinforces the anti-tumoral role of Notch3 in breast tumorigenesis.


Assuntos
Neoplasias da Mama , Transformação Celular Neoplásica , Animais , Feminino , Humanos , Camundongos , Fatores de Transcrição Hélice-Alça-Hélice Básicos , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Ciclo Celular , Proteínas de Ciclo Celular , Divisão Celular , Transformação Celular Neoplásica/genética , Transformação Celular Neoplásica/metabolismo , Homeostase , Receptor Notch3/genética , Proteínas Repressoras , Transativadores
17.
Cell Death Differ ; 30(2): 397-406, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36456775

RESUMO

Hallmark pathological features of brain trauma are axonal degeneration and demyelination because myelin-producing oligodendrocytes (OLs) are particularly vulnerable to injury-induced death signals. To reveal mechanisms responsible for this OL loss, we examined a novel class of "death receptors" called dependence receptors (DepRs). DepRs initiate pro-death signals in the absence of their respective ligand(s), yet little is known about their role after injury. Here, we investigated whether the deleted in colorectal cancer (DCC) DepR contributes to OL loss after brain injury. We found that administration of its netrin-1 ligand is sufficient to block OL cell death. We also show that upon acute injury, DCC is upregulated while netrin-1 is downregulated in perilesional tissues. Moreover, after genetically silencing pro-death activity using DCCD1290N mutant mice, we observed greater OL survival, greater myelin integrity, and improved motor function. Our findings uncover a novel role for the netrin-1/DCC pathway in regulating OL loss in the traumatically injured brain.


Assuntos
Lesões Encefálicas , Receptor DCC , Netrina-1 , Proteínas Supressoras de Tumor , Animais , Camundongos , Morte Celular , Receptor DCC/metabolismo , Ligantes , Fatores de Crescimento Neural/genética , Fatores de Crescimento Neural/metabolismo , Netrina-1/metabolismo , Netrinas , Oligodendroglia/metabolismo , Receptores de Superfície Celular/metabolismo , Proteínas Supressoras de Tumor/genética , Proteínas Supressoras de Tumor/metabolismo
18.
Vet Sci ; 9(9)2022 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-36136711

RESUMO

Netrin-1 is a member of the laminin superfamily, and is known to interact with specific receptors, called dependence receptors. While upon netrin-1 binding these receptors initiate positive signaling, in absence of netrin-1, these receptors trigger apoptosis. Tumor cells can avoid apoptosis by inactivating these receptors or by gaining ligand expression. The aim of the present study was to investigate the expression of netrin-1, the ligand of dependence receptors, in canine healthy lymph nodes (LN), and in lymphomas and to evaluate efficiency of a netrin-1 interfering compound in cell cultures from canine lymphoma. Thirty-two control LN and 169 lymphomas were analyzed through immunohistochemistry. Netrin-1 was expressed in the nucleoli of lymphoid and non-lymphoid cells in controls. Acquisition of a cytoplasmic expression was present in B-cell lymphomas (23.1 % in low-grade and 50.6% in high-grade) and T-cell lymphomas (50.0 % in low-grade and 78.8 % in high-grade), with a significant difference between the high- and low-grade in B-cell lymphomas. Through flow cytometry, we showed a significant increase in netrin-1 expression in either high-grade B-cell and T-cell lymphomas (19 and 5, respectively) compared with healthy LN (5), likewise an RT-qPCR analysis demonstrated a significant increase in netrin-1 expression level in 14 samples of lymphomas compared with eight samples of healthy LN. A T-cell aggressive canine lymphoma cell line and four primary canine nodal lymphomas cell cultures were treated with a netrin-1 interfering antibody. Apoptosis by measuring caspase 3 activity was significantly increased in the cell line and viability was decreased in three of the four primary cell cultures. Together, these data suggest that netrin-1 expression is increased in lymphoma, and more specifically in high-grade lymphomas, and that netrin-1 can act as a survival factor for the neoplastic cells, and so be a therapeutic target.

19.
Biomolecules ; 12(7)2022 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-35883457

RESUMO

Since the Nobel Prize award more than twenty years ago for discovering the core apoptotic pathway in C. elegans, apoptosis and various other forms of regulated cell death have been thoroughly characterized by researchers around the world. Although many aspects of regulated cell death still remain to be elucidated in specific cell subtypes and disease conditions, many predicted that research into cell death was inexorably reaching a plateau. However, this was not the case since the last decade saw a multitude of cell death modalities being described, while harnessing their therapeutic potential reached clinical use in certain cases. In line with keeping research into cell death alive, francophone researchers from several institutions in France and Belgium established the French Cell Death Research Network (FCDRN). The research conducted by FCDRN is at the leading edge of emerging topics such as non-apoptotic functions of apoptotic effectors, paracrine effects of cell death, novel canonical and non-canonical mechanisms to induce apoptosis in cell death-resistant cancer cells or regulated forms of necrosis and the associated immunogenic response. Collectively, these various lines of research all emerged from the study of apoptosis and in the next few years will increase the mechanistic knowledge into regulated cell death and how to harness it for therapy.


Assuntos
Caenorhabditis elegans , Neoplasias , Animais , Apoptose , Morte Celular , Humanos , Necrose
20.
Hepatology ; 76(5): 1345-1359, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35253915

RESUMO

BACKGROUND AND AIMS: Netrin-1 displays protumoral properties, though the pathological contexts and processes involved in its induction remain understudied. The liver is a major model of inflammation-associated cancer development, leading to HCC. APPROACH AND RESULTS: A panel of cell biology and biochemistry approaches (reverse transcription quantitative polymerase chain reaction, reporter assays, run-on, polysome fractionation, cross linking immunoprecipitation, filter binding assay, subcellular fractionation, western blotting, immunoprecipitation, stable isotope labeling by amino acids in cell culture) on in vitro-grown primary hepatocytes, human liver cell lines, mouse samples and clinical samples was used. We identify netrin-1 as a hepatic inflammation-inducible factor and decipher its mode of activation through an exhaustive eliminative approach. We show that netrin-1 up-regulation relies on a hitherto unknown mode of induction, namely its exclusive translational activation. This process includes the transfer of NTN1 (netrin-1) mRNA to the endoplasmic reticulum and the direct interaction between the Staufen-1 protein and this transcript as well as netrin-1 mobilization from its cell-bound form. Finally, we explore the impact of a phase 2 clinical trial-tested humanized anti-netrin-1 antibody (NP137) in two distinct, toll-like receptor (TLR) 2/TLR3/TLR6-dependent, hepatic inflammatory mouse settings. We observe a clear anti-inflammatory activity indicating the proinflammatory impact of netrin-1 on several chemokines and Ly6C+ macrophages. CONCLUSIONS: These results identify netrin-1 as an inflammation-inducible factor in the liver through an atypical mechanism as well as its contribution to hepatic inflammation.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Camundongos , Humanos , Animais , Receptor 2 Toll-Like , Fatores de Crescimento Neural/metabolismo , Receptor 3 Toll-Like , Receptor 6 Toll-Like , Proteínas Supressoras de Tumor/metabolismo , Inflamação/metabolismo , Anti-Inflamatórios , RNA Mensageiro , Aminoácidos , Receptores de Netrina
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA