Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Mol Microbiol ; 98(4): 743-59, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26235546

RESUMO

Phage shock protein A (PspA) belongs to the highy conserved PspA/IM30 family and is a key component of the stress inducible Psp system in Escherichia coli. One of its central roles is the regulatory interaction with the transcriptional activator of this system, the σ(54) enhancer-binding protein PspF, a member of the AAA+ protein family. The PspA/F regulatory system has been intensively studied and serves as a paradigm for AAA+ enzyme regulation by trans-acting factors. However, the molecular mechanism of how exactly PspA controls the activity of PspF and hence σ(54) -dependent expression of the psp genes is still unclear. To approach this question, we identified the minimal PspF-interacting domain of PspA, solved its structure, determined its affinity to PspF and the dissociation kinetics, identified residues that are potentially important for PspF regulation and analyzed effects of their mutation on PspF in vivo and in vitro. Our data indicate that several characteristics of AAA+ regulation in the PspA·F complex resemble those of the AAA+ unfoldase ClpB, with both proteins being regulated by a structurally highly conserved coiled-coil domain. The convergent evolution of both regulatory domains points to a general mechanism to control AAA+ activity for divergent physiologic tasks via coiled-coil domains.


Assuntos
Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Proteínas de Escherichia coli/genética , Escherichia coli/genética , Proteínas de Choque Térmico/química , Proteínas de Choque Térmico/metabolismo , Transativadores/metabolismo , Proteínas de Bactérias/genética , Endopeptidase Clp , Escherichia coli/fisiologia , Proteínas de Escherichia coli/metabolismo , Proteínas de Escherichia coli/fisiologia , Regulação Bacteriana da Expressão Gênica , Proteínas de Choque Térmico/genética , Regiões Promotoras Genéticas , Ligação Proteica , Fator sigma/genética , Fator sigma/metabolismo , Transativadores/genética , Transcrição Gênica
2.
PLoS One ; 10(3): e0119761, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25774531

RESUMO

The Tat system can transport folded, signal peptide-containing proteins (Tat substrates) across energized membranes of prokaryotes and plant plastids. A twin-arginine motif in the signal peptide of Tat substrates is recognized by TatC-containing complexes, and TatA permits the membrane passage. Often, as in the model Tat systems of Escherichia coli and plant plastids, a third component - TatB - is involved that resembles TatA but has a higher affinity to TatC. It is not known why most TatA dissociates from TatBC complexes in vivo and distributes more evenly in the membrane. Here we show a TatBC-independent substrate-binding to TatA from Escherichia coli, and we provide evidence that this binding enhances Tat transport. First hints came from in vivo cross-linking data, which could be confirmed by affinity co-purification of TatA with the natural Tat substrates HiPIP and NrfC. Two positions on the surface of HiPIP could be identified that are important for the TatA interaction and transport efficiency, indicating physiological relevance of the interaction. Distributed TatA thus may serve to accompany membrane-interacting Tat substrates to the few TatBC spots in the cells.


Assuntos
Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Proteínas de Membrana Transportadoras/genética , Transporte Proteico/fisiologia
3.
J Biol Chem ; 287(33): 27834-42, 2012 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-22689583

RESUMO

Tat systems transport folded proteins across energized membranes of bacteria, archaea, and plant plastids. In Escherichia coli, TatBC complexes recognize the transported proteins, and TatA complexes are recruited to facilitate transport. We achieved an abstraction of TatA from membranes without use of detergents and observed a co-purification of PspA, a membrane-stress response protein. The N-terminal transmembrane domain of TatA was required for the interaction. Electron microscopy displayed TatA complexes in direct contact with PspA. PspB and PspC were important for the TatA-PspA contact. The activator protein PspF was not involved in the PspA-TatA interaction, demonstrating that basal levels of PspA already interact with TatA. Elevated TatA levels caused membrane stress that induced a strictly PspBC- and PspF-dependent up-regulation of PspA. TatA complexes were found to destabilize membranes under these conditions. At native TatA levels, PspA deficiency clearly affected anaerobic TMAO respiratory growth, suggesting that energetic costs for transport of large Tat substrates such as TMAO reductase can become growth limiting in the absence of PspA. The physiological role of PspA recruitment to TatA may therefore be the control of membrane stress at active translocons.


Assuntos
Proteínas de Bactérias/metabolismo , Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , Proteínas de Choque Térmico/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Dobramento de Proteína , Transativadores/metabolismo , Proteínas de Bactérias/genética , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Proteínas de Choque Térmico/genética , Proteínas de Membrana Transportadoras/genética , Estrutura Terciária de Proteína , Transativadores/genética
4.
FEBS Lett ; 582(25-26): 3585-9, 2008 Oct 29.
Artigo em Inglês | MEDLINE | ID: mdl-18789328

RESUMO

The phage shock protein A (PspA) of Escherichia coli stabilizes the cytoplasmic membrane under stress conditions. Here we demonstrate that PspA can form hollow spherical or prolate spheroidal particles of about 30-40nm diameter with a scaffold-like arrangement of protein subunits at the surface. The 'PspA-scaffold' is the basic structure that is common to all particles. The PspA-scaffold may be of fundamental importance, as it could allow PspA to stabilize the integrity of membranes through numerous contact points over a large surface area.


Assuntos
Proteínas de Bactérias/química , Proteínas de Escherichia coli/química , Escherichia coli/metabolismo , Proteínas de Choque Térmico/química , Proteínas de Bactérias/isolamento & purificação , Proteínas de Bactérias/ultraestrutura , Membrana Celular/química , Membrana Celular/metabolismo , Escherichia coli/ultraestrutura , Proteínas de Escherichia coli/isolamento & purificação , Proteínas de Escherichia coli/ultraestrutura , Proteínas de Choque Térmico/isolamento & purificação , Proteínas de Choque Térmico/ultraestrutura
5.
J Biol Chem ; 283(37): 25281-25289, 2008 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-18644791

RESUMO

The twin-arginine translocation (Tat) system of bacteria and plant plastids serves to translocate folded proteins across energized biological membranes. In Escherichia coli, the three components TatA, TatB, and TatC mediate this membrane passage. Here we demonstrate that TatA can assemble to form clusters of tube-like structures in vivo. While the presence of TatC is essential for their formation, TatB is not required. The TatA tubes have uniform outer and inner diameters of about 11.5 nm and 6.7 nm, respectively. They align to form a crystalline-like structure in which each tube is surrounded by six TatA tubes. The tube structures become easily detectable even at only a 15-fold overexpression of the tatABC genes. The TatA tubes could also be visualized by fluorescence when untagged TatA was mixed with low amounts of TatA-GFP. The structures were often found in contact with the cell poles. Because TatC is most likely polar in E. coli, as demonstrated by a RR-dependent targeting of translocation-incompatible Tat substrates to the cell poles, and because TatC is required for the formation of aligned TatA tubes, it is proposed that the TatA tubes are initiated at polarly localized TatC.


Assuntos
Citoplasma/metabolismo , Proteínas de Escherichia coli/biossíntese , Escherichia coli/metabolismo , Regulação Bacteriana da Expressão Gênica , Proteínas de Membrana Transportadoras/biossíntese , Proteínas Recombinantes/química , Bioquímica/métodos , Proteínas de Fluorescência Verde/metabolismo , Microscopia Confocal , Microscopia Eletrônica , Microscopia de Fluorescência , Modelos Biológicos , Mutação Puntual
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA