Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Am J Physiol Regul Integr Comp Physiol ; 321(5): R802-R811, 2021 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-34612088

RESUMO

Hospitalized preterm infants experience painful medical procedures. Oral sucrose is the nonpharmacological standard of care for minor procedural pain relief. Infants are treated with numerous doses of sucrose, raising concerns about potential long-term effects. The objective of this study was to determine the long-term effects of neonatal oral sucrose treatment on growth and liver metabolism in a mouse model. Neonatal female and male mice were randomly assigned to one of two oral treatments (n = 7-10 mice/group/sex): sterile water or sucrose. Pups were treated 10 times/day for the first 6 days of life with 0.2 mg/g body wt of respective treatments (24% solution; 1-4 µL/dose) to mimic what is given to preterm infants. Mice were weaned at age 3 wk onto a control diet and fed until age 16 wk. Sucrose-treated female and male mice gained less weight during the treatment period and were smaller at weaning than water-treated mice (P ≤ 0.05); no effect of sucrose treatment on body weight was observed at adulthood. However, adult sucrose-treated female mice had smaller tibias and lower serum insulin-like growth factor-1 than adult water-treated female mice (P ≤ 0.05); these effects were not observed in males. Lower liver S-adenosylmethionine, phosphocholine, and glycerophosphocholine were observed in adult sucrose-treated compared with water-treated female and male mice (P ≤ 0.05). Sucrose-treated female, but not male, mice had lower liver free choline and higher liver betaine compared with water-treated female mice (P < 0.01). Our findings suggest that repeated neonatal sucrose treatment has long-term sex-specific effects on growth and liver methionine and choline metabolism.


Assuntos
Analgésicos/toxicidade , Colina/metabolismo , Glucocorticoides/metabolismo , Fígado/efeitos dos fármacos , Sacarose/toxicidade , Tíbia/efeitos dos fármacos , Aumento de Peso/efeitos dos fármacos , Administração Oral , Fatores Etários , Analgésicos/administração & dosagem , Animais , Animais Recém-Nascidos , Betaína/metabolismo , Feminino , Glicerilfosforilcolina/metabolismo , Fator de Crescimento Insulin-Like I/metabolismo , Fígado/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Fosforilcolina/metabolismo , S-Adenosilmetionina/metabolismo , Fatores Sexuais , Sacarose/administração & dosagem , Tíbia/crescimento & desenvolvimento
2.
PLoS One ; 11(4): e0153280, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27055260

RESUMO

Insulin is an essential hormone with key roles in energy homeostasis and body composition. Mice and rats, unlike other mammals, have two insulin genes: the rodent-specific Ins1 gene and the ancestral Ins2 gene. The relationships between insulin gene dosage and obesity has previously been explored in male and female Ins2-/- mice with full or reduced Ins1 dosage, as well as in female Ins1-/- mice with full or partial Ins2 dosage. We report herein unexpected hyper-variability in Ins1-null male mice, with respect to their circulating insulin levels and to the physiological effects of modulating Ins2 gene dosage. Two large cohorts of Ins1-/-:Ins2+/- mice and their Ins1-/-:Ins2+/+ littermates were fed chow diet or high fat diet (HFD) from weaning, and housed in specific pathogen-free conditions. Cohort A and cohort B were studied one year apart. Contrary to female mice from the same litters, inactivating one Ins2 allele on the complete Ins1-null background did not consistently cause a reduction of circulating insulin in male mice, on either diet. In cohort A, all HFD-fed males showed an equivalent degree of insulin hypersecretion and weight gain, regardless of Ins2 dosage. In cohort B the effects of HFD appeared generally diminished, and cohort B Ins1-/-:Ins2+/- males showed decreased insulin levels and body mass compared to Ins1-/-:Ins2+/+ littermates, on both diets. Although experimental conditions were consistent between cohorts, we found that HFD-fed Ins1-/-:Ins2+/- mice with lower insulin levels had increased corticosterone. Collectively, these observations highlight the phenotypic characteristics that change in association with differences in circulating insulin and Ins2 gene dosage, particularly in male mice.


Assuntos
Glicemia/análise , Dieta Hiperlipídica/efeitos adversos , Insulina/metabolismo , Obesidade/etiologia , Animais , Composição Corporal , Feminino , Hiperinsulinismo/etiologia , Hiperinsulinismo/metabolismo , Hiperinsulinismo/patologia , Insulina/sangue , Insulina/fisiologia , Resistência à Insulina , Secreção de Insulina , Ilhotas Pancreáticas/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Obesidade/metabolismo , Obesidade/patologia , Ratos , Organismos Livres de Patógenos Específicos
3.
J Proteomics ; 118: 21-38, 2015 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-25451012

RESUMO

Because misfolded and damaged proteins can form potentially harmful aggregates, all living organisms have evolved a wide variety of quality control mechanisms. However, the timely clearance of aggregation-prone species may not always be achieved, potentially leading to the accumulation of low solubility proteins. At the same time, promiscuity, which can be a driving force for aggregation, is also important to the functionality of certain proteins which have a large number of interaction partners. Considerable efforts have been made towards characterizing why some proteins appear to be more aggregation-prone than others. In this study, we analyze the features of proteins which precipitate following centrifugation in unstressed yeast cells, human SH-SY5Y cells and mouse brain tissue. By normalizing for protein abundance, we devised an approach whereby lower solubility proteins are reliably identified. Our findings indicate that these tend to be longer, low abundance proteins, which contain fewer hydrophobic amino acids. Furthermore, low solubility proteins also contain more low complexity and disordered regions. Overall, we observed an increase in features that link low solubility proteins to functional aggregates. Our results indicate that lower solubility proteins from three biologically distinct model systems share several common traits, shedding light on potentially universal solubility determinants. BIOLOGICAL SIGNIFICANCE: We set up a novel approach to identify lower solubility proteins in unstressed cells by comparing precipitated proteins with those that remain soluble after centrifugation. By analyzing three eukaryotic model systems in parallel, we were able to identify traits which cross the species barrier, as well as species-specific characteristics. Notably, our analyses revealed a number of primary and secondary structural features that set apart lower solubility proteins, a number of which connected them to a greater potential for promiscuity. This article is part of a Special Issue entitled: Protein dynamics in health and disease. Guest Editors: Pierre Thibault and Anne-Claude Gingras.


Assuntos
Agregados Proteicos , Saccharomyces cerevisiae/metabolismo , Animais , Linhagem Celular , Humanos , Camundongos , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/genética , Saccharomyces cerevisiae/genética , Solubilidade
4.
Cell Metab ; 16(6): 723-37, 2012 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-23217255

RESUMO

Hyperinsulinemia is associated with obesity and pancreatic islet hyperplasia, but whether insulin causes these phenomena or is a compensatory response has remained unsettled for decades. We examined the role of insulin hypersecretion in diet-induced obesity by varying the pancreas-specific Ins1 gene dosage in mice lacking Ins2 gene expression in the pancreas, thymus, and brain. Age-dependent increases in fasting insulin and ß cell mass were absent in Ins1(+/-):Ins2(-/-) mice fed a high-fat diet when compared to Ins1(+/+):Ins2(-/-) littermate controls. Remarkably, Ins1(+/-):Ins2(-/-) mice were completely protected from diet-induced obesity. Genetic prevention of chronic hyperinsulinemia in this model reprogrammed white adipose tissue to express uncoupling protein 1 and increase energy expenditure. Normalization of adipocyte size and activation of energy expenditure genes in white adipose tissue was associated with reduced inflammation, reduced fatty acid spillover, and reduced hepatic steatosis. Thus, we provide genetic evidence that pathological circulating hyperinsulinemia drives diet-induced obesity and its complications.


Assuntos
Encéfalo/metabolismo , Dieta Hiperlipídica , Hiperinsulinismo/metabolismo , Insulina/metabolismo , Obesidade/metabolismo , Adipócitos/metabolismo , Tecido Adiposo Branco/metabolismo , Animais , Encéfalo/patologia , Sistema Nervoso Central/metabolismo , Sistema Nervoso Central/patologia , Metabolismo Energético/genética , Ácidos Graxos/metabolismo , Fígado Gorduroso/etiologia , Fígado Gorduroso/metabolismo , Dosagem de Genes , Expressão Gênica , Glucose/metabolismo , Humanos , Hiperinsulinismo/patologia , Insulina/deficiência , Insulina/genética , Células Secretoras de Insulina/metabolismo , Canais Iônicos/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteínas Mitocondriais/metabolismo , Obesidade/patologia , Pâncreas/metabolismo , Pâncreas/patologia , Proteína Desacopladora 1
5.
FASEB J ; 25(11): 3884-95, 2011 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-21817126

RESUMO

Regulation of glucose homeostasis by insulin depends on pancreatic ß-cell growth, survival, and function. Raf-1 kinase is a major downstream target of several growth factors that promote proliferation and survival of many cell types, including the pancreatic ß cells. We have previously reported that insulin protects ß cells from apoptosis and promotes proliferation by activating Raf-1 signaling in cultured human islets, mouse islets, and MIN6 cells. As Raf-1 activity is critical for basal apoptosis and insulin secretion in vitro, we hypothesized that Raf-1 may play an important role in glucose homeostasis in vivo. To test this hypothesis, we utilized the Cre-loxP recombination system to obtain a pancreatic ß-cell-specific ablation of Raf-1 kinase gene (RIPCre(+/+):Raf-1(flox/flox)) and a complete set of littermate controls (RIPCre(+/+):Raf-1(wt/wt)). RIPCre(+/+):Raf-1(flox/flox) mice were viable, and no effects on weight gain were observed. RIPCre(+/+):Raf-1(flox/flox) mice had increased fasting blood glucose levels and impaired glucose tolerance but normal insulin tolerance compared to littermate controls. Insulin secretion in vivo and in isolated islets was markedly impaired, but there was no apparent effect on the exocytosis machinery. However, islet insulin protein and insulin 2 mRNA, but not insulin 1 mRNA, were dramatically reduced in Raf-1-knockout mice. Analysis of insulin 2 knockout mice demonstrated that this reduction in mRNA was sufficient to impair in vivo insulin secretion. Our data further indicate that Raf-1 specifically and acutely regulates insulin 2 mRNA via negative action on Foxo1, which has been shown to selectively control the insulin 2 gene. This work provides the first direct evidence that Raf-1 signaling is essential for the regulation of basal insulin transcription and the supply of releasable insulin in vivo.


Assuntos
Glicemia/metabolismo , Fatores de Transcrição Forkhead/fisiologia , Células Secretoras de Insulina/fisiologia , Insulina/metabolismo , Proteínas Proto-Oncogênicas c-raf/fisiologia , Animais , Apoptose/fisiologia , Proliferação de Células , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Feminino , Proteína Forkhead Box O1 , Homeostase , Insulina/biossíntese , Secreção de Insulina , Células Secretoras de Insulina/patologia , Masculino , Camundongos , Camundongos Knockout
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA