Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Wound Repair Regen ; 28(4): 506-516, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32281194

RESUMO

The advancement of autologous mesenchymal stem cell (MSC) therapy for the treatment of non-healing diabetic wounds is hampered by endogenous MSC dysfunction and limited viability of cells post-transplantation into the pathological wound environment. The development of effective strategies to restore the functional capabilities of these impaired MSCs prior to transplantation may be a key to their ultimate success as wound repair mediators. The current study therefore investigated whether antioxidant preconditioning [7.5 mM N-acetylcysteine (NAC) + 0.6 mM ascorbic 2-phosphate (AAP)] could restore the growth rate, migration ability and viability of impaired MSCs and whether this restored state is maintained in the presence of diabetic wound fluid (DWF). Healthy control (source: wild type, C57BL/6J mice) (n = 12) and impaired/diabetic MSCs (source: obese prediabetic, B6.Cg-Lepob/J mice) (n = 12) were isolated from the bone marrow of mice. Treatment groups post-isolation were as follow: (a) No treatment (baseline phenotype): MSCs expanded in standard growth media (SGM) (±8 days) and only exposed to growth media. (b) DWF (baseline response): MSCs expanded in SGM (±8 days) followed by exposure to DWF (24 hours, 48 hours, 96 hours). (c) Antioxidant preconditioning (preconditioned phenotype): MSCs expanded in the presence of NAC/AAP (±8 days). (d) Antioxidant preconditioning + DWF (preconditioned response): MSCs expanded in the presence of NAC/AAP (±8 days) followed by exposure to DWF (24 hours, 48 hours, 96 hours). The results demonstrated that expansion of MSCs (both healthy control and impaired diabetic) in the presence of combined NAC/AAP treatment improved ex vivo MSC viability and protected MSCs in the presence of DWF. Despite improved viability, AAP/NAC could however not rescue the reduced proliferation and migration capacity of impaired diabetic MSCs. The protective effect of NAC/AAP preconditioning against the toxicity of DWF could however be a potential strategy to improve cell number post-transplantation.


Assuntos
Acetilcisteína/farmacologia , Antioxidantes/farmacologia , Ácido Ascórbico/análogos & derivados , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Células-Tronco Mesenquimais/efeitos dos fármacos , Estado Pré-Diabético/metabolismo , Ferimentos e Lesões/metabolismo , Animais , Ácido Ascórbico/farmacologia , Estudos de Casos e Controles , Sobrevivência Celular/efeitos dos fármacos , Diabetes Mellitus/metabolismo , Exsudatos e Transudatos , Transplante de Células-Tronco Mesenquimais , Camundongos , Camundongos Obesos , Osteogênese , Transplante Autólogo
2.
Methods Mol Biol ; 2138: 119-134, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32219743

RESUMO

Disease-associated impairment/dysfunction of stem cell populations is prominent in chronic metabolic and inflammatory diseases, such as type 2 diabetes mellitus (DM) where the multifunctional properties (viability, proliferation, paracrine secretion, multilineage differentiation) of bone marrow resident mesenchymal stem cells (MSCs) can be affected. The growth and viability impairments make it difficult to study the underlying molecular mechanisms related to the dysfunction of these cells in vitro. We have consequently optimized the isolation and culture conditions for impaired/dysfunctional bone marrow MSCs from B6.Cg-Lepob/J obese prediabetic mice. The method described here permits ex vivo investigations into disease-associated functional impairments and the dysregulated molecular mechanisms in these primary MSCs through direct comparisons with their healthy wild-type C57BL6/J control mouse counterparts.


Assuntos
Células da Medula Óssea/citologia , Células-Tronco Mesenquimais/citologia , Doenças Metabólicas/patologia , Animais , Diferenciação Celular/fisiologia , Proliferação de Células/fisiologia , Sobrevivência Celular/fisiologia , Células Cultivadas , Doença Crônica , Diabetes Mellitus Tipo 2/patologia , Inflamação/patologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Obesos , Estado Pré-Diabético/patologia
3.
Stem Cells Dev ; 27(23): 1646-1657, 2018 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-30187827

RESUMO

Mesenchymal stem cells (MSCs) are a promising therapeutic tool for the treatment of nonhealing diabetic wounds. The pathological nature of the niche microenvironment limits the use of autologous cell therapy in diabetic patients. Prolonged exposure of endogenous MSCs to a pathological microenvironment in vivo reduces their ability to respond to environmental cues. This study investigated the effectiveness of ex vivo antioxidant treatment [N-acetylcysteine (7.5 mM NAC) and Ascorbic acid 2-phosphate (0.6 mM AAP)] to restore the paracrine function of diabetic MSCs. Healthy control [bone marrow stem cells derived from wild-type mice (SCWT)] (source: wild-type C57BL/6J mice) (n = 12) and impaired/dysfunctional [bone marrow stem cells derived from ob/ob mice (SCob)] (source: obese diabetic, B6.Cg-Lepob/J mice) (n = 12) MSCs were isolated. Ex vivo treatment groups (SCWT vs. SCob) were as follows: (1) no treatment (baseline phenotype), (2) stimulated with diabetic wound fluid (DWF) (baseline response), (3) antioxidant preconditioning (preconditioned phenotype), and (4) antioxidant preconditioned with subsequent stimulation with DWF (preconditioned response). The paracrine responsiveness on both the molecular (mRNA expression of 80 cytokines and receptors, quantitative polymerase chain reaction microarray) and protein (23-plex bead-array Luminex assay) level was assessed. At baseline, 31 genes were overexpressed (> × 2-fold) and 39 genes were underexpressed (> × 2-fold) in SCob versus SCWT. In conditioned media, significant differences (P < 0.05) were detected at baseline for two proinflammatory cytokines [tumor necrosis factor alpha (TNFα) and interferon gamma (IFNγ)], four chemokines [keratinocyte chemoattractant (KC), granulocyte colony-stimulating factor (GCSF), Eotaxin, and macrophage chemoattractant protein (MCP1)], and one anti-inflammatory cytokine [interleukin 10 (IL10)]. Following stimulation with DWF, significant differences (P < 0.05) were detected in the secretion of two chemokines [granulocyte macrophage colony-stimulating factor (GMCSF) and Eotaxin], three proinflammatory cytokines (TNFα, IFNγ, and IL9), and four anti-inflammatory cytokines (IL10, IL4, IL13, and IL3). Antioxidant preconditioning significantly dampened the excessive TNFα response observed in SCob and improved the secretion of IL10. Taken together these data suggest that the combined ex vivo treatment of autologous stem cells with NAC and AAP could potentially be an effective strategy to restore the paracrine function of impaired diabetic MSCs before transplantation.


Assuntos
Antioxidantes/farmacologia , Células da Medula Óssea/efeitos dos fármacos , Angiopatias Diabéticas/terapia , Células-Tronco Mesenquimais/efeitos dos fármacos , Comunicação Parácrina , Acetilcisteína/farmacologia , Animais , Ácido Ascórbico/análogos & derivados , Ácido Ascórbico/farmacologia , Células da Medula Óssea/metabolismo , Citocinas/genética , Citocinas/metabolismo , Angiopatias Diabéticas/metabolismo , Transplante de Células-Tronco Mesenquimais/métodos , Células-Tronco Mesenquimais/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Obesos , Transcriptoma
4.
PLoS One ; 11(10): e0164063, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27716847

RESUMO

Myosin-1C (MYO1C) is a tumor suppressor candidate located in a region of recurrent losses distal to TP53. Myo1c can tightly and specifically bind to PIP2, the substrate of Phosphoinositide 3-kinase (PI3K), and to Rictor, suggesting a role for MYO1C in the PI3K pathway. This study was designed to examine MYO1C expression status in a panel of well-stratified endometrial carcinomas as well as to assess the biological significance of MYO1C as a tumor suppressor in vitro. We found a significant correlation between the tumor stage and lowered expression of MYO1C in endometrial carcinoma samples. In cell transfection experiments, we found a negative correlation between MYO1C expression and cell proliferation, and MYO1C silencing resulted in diminished cell migration and adhesion. Cells expressing excess of MYO1C had low basal level of phosphorylated protein kinase B (PKB, a.k.a. AKT) and cells with knocked down MYO1C expression showed a quicker phosphorylated AKT (pAKT) response in reaction to serum stimulation. Taken together the present study gives further evidence for tumor suppressor activity of MYO1C and suggests MYO1C mediates its tumor suppressor function through inhibition of PI3K pathway and its involvement in loss of contact inhibition.


Assuntos
Adesão Celular/genética , Proliferação de Células/genética , Miosina Tipo I/genética , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Supressoras de Tumor/genética , Linhagem Celular Tumoral , Movimento Celular/genética , Células Cultivadas , Células HEK293 , Humanos , Fosfatidilinositol 3-Quinases/genética , Fosforilação/genética , Transdução de Sinais/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA