RESUMO
The clinical importance of assessing and combining data on TP53 mutations and isoforms is discussed in this article. It gives a succinct overview of the structural makeup and key biological roles of the isoforms. It then provides a comprehensive summary of the roles that p53 isoforms play in cancer development, therapy response and resistance. The review provides a summary of studies demonstrating the role of p53 isoforms as potential prognostic indicators. It further provides evidence on how the presence of TP53 mutations may affect one or more of these activities and the association of p53 isoforms with clinicopathological data in various tumour types. The review gives insight into the present diagnostic hurdles for identifying TP53 isoforms and makes recommendations to improve their evaluation. In conclusion, this review offers suggestions for enhancing the identification and integration of TP53 isoforms in conjunction with mutation data within the clinical context.
Assuntos
Mutação , Neoplasias , Isoformas de Proteínas , Proteína Supressora de Tumor p53 , Humanos , Isoformas de Proteínas/genética , Proteína Supressora de Tumor p53/genética , Neoplasias/genética , Neoplasias/patologia , PrognósticoRESUMO
BACKGROUND: The p53 isoform Δ133p53ß is known to be associated with cancers driven by inflammation. Many of the features associated with the development of inflammation in rheumatoid arthritis (RA) parallel those evident in cancer progression. However, the role of this isoform in RA has not yet been explored. The aim of this study was to determine whether Δ133p53ß is driving aggressive disease in RA. METHODS: Using RA patient synovia, we carried out RT-qPCR and RNAScope-ISH to determine both protein and mRNA levels of Δ133p53 and p53. We also used IHC to determine the location and type of cells with elevated levels of Δ133p53ß. Plasma cytokines were also measured using a BioPlex cytokine panel and data analysed by the Milliplex Analyst software. RESULTS: Elevated levels of pro-inflammatory plasma cytokines were associated with synovia from RA patients displaying extensive tissue inflammation, increased immune cell infiltration and the highest levels of Δ133TP53 and TP53ß mRNA. Located in perivascular regions of synovial sub-lining and surrounding ectopic lymphoid structures (ELS) were a subset of cells with high levels of CD90, a marker of 'activated fibroblasts' together with elevated levels of Δ133p53ß. CONCLUSIONS: Induction of Δ133p53ß in CD90+ synovial fibroblasts leads to an increase in cytokine and chemokine expression and the recruitment of proinflammatory cells into the synovial joint, creating a persistently inflamed environment. Our results show that dysregulated expression of Δ133p53ß could represent one of the early triggers in the immunopathogenesis of RA and actively perpetuates chronic synovial inflammation. Therefore, Δ133p53ß could be used as a biomarker to identify RA patients more likely to develop aggressive disease who might benefit from targeted therapy to cytokines such as IL-6.
Assuntos
Artrite Reumatoide , Proteína Supressora de Tumor p53 , Humanos , Artrite Reumatoide/metabolismo , Células Cultivadas , Citocinas/metabolismo , Fibroblastos/metabolismo , Inflamação/patologia , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , RNA Mensageiro/metabolismo , Membrana Sinovial/metabolismo , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo , Antígenos Thy-1/imunologiaRESUMO
The Δ133p53ß isoform is increased in many primary tumors and has many tumor-promoting properties that contribute to increased proliferation, migration and inflammation. Here we investigated whether Δ133p53ß contributed to some of the most aggressive tumors that had metastasized to the brain. Δ133p53ß mRNA expression was measured in lung, breast, melanoma, colorectal metastases and, where available, the matched primary tumor. The presence of Δ133p53ß expression was associated with the time for the primary tumor to metastasize and overall survival once the tumor was detected in the brain. Δ133p53ß was present in over 50% of lung, breast, melanoma and colorectal metastases to the brain. It was also increased in the brain metastases compared with the matched primary tumor. Brain metastases with Δ133p53ß expressed were associated with a reduced time for the primary tumor to metastasize to the brain compared with tumors with no Δ133p53ß expression. In-vitro-based analyses in Δ133p53ß-expressing cells showed increased cancer-promoting proteins on the cell surface and increased downstream p-AKT and p-MAPK signaling. Δ133p53ß-expressing cells also invaded more readily across a mock blood-brain barrier. Together these data suggested that Δ133p53ß contributes to brain metastases by making cells more likely to invade the brain.
Assuntos
Neoplasias Encefálicas , Proteína Supressora de Tumor p53 , Humanos , Neoplasias Encefálicas/metabolismo , Metástase Neoplásica , Isoformas de Proteínas/genética , Proteína Supressora de Tumor p53/genética , Deleção de GenesRESUMO
Genomic analysis of tumors is transforming our understanding of cancer. However, although a great deal of attention is paid to the accuracy of the cancer genomic data itself, less attention has been paid to the accuracy of the associated clinical information that renders the genomic data useful for research. In this brief communication, we suggest that omissions and errors in clinical annotations have a major impact on the interpretation of cancer genomic data. We describe our discovery of annotation omissions and errors when reviewing an already carefully annotated colorectal cancer gene expression dataset from our laboratory. The potential importance of clinical annotation omissions and errors was then explored using simulation analyses with an independent genomic dataset. We suggest that the completeness and veracity of clinical annotations accompanying cancer genomic data require renewed focus by the oncology research community, when planning new collections and when interpreting existing cancer genomic data.
Assuntos
Genômica , Neoplasias , Humanos , Simulação por Computador , Neoplasias/genéticaRESUMO
The initiation of CD8+ T cell responses against dead cell-associated Ags is tightly regulated, facilitating adaptive immunity against pathogens and tumors while preventing autoimmunity. It is now well established that dying cells actively regulate the generation of CD8+ T cell responses via the release or exposure of damage-associated molecular patterns. However, it is unclear whether nonproteasomal proteases (activated in stressed and dying cells) can influence the availability of Ags for cross-presentation. Using a mouse model of immunogenic necrosis, we investigated the role of tumor-derived proteases in the priming of CD8+ T cells. We demonstrate that proteases released from necrotic tumor cells can degrade whole-protein Ag, generating proteolytic intermediates that are efficiently cross-presented by dendritic cells and enhance CD8+ T cell cross-priming. We identify a dominant role for calpain proteases, which are activated during necrotic cell death induced by severe heat shock. Mechanistically, proteolytic intermediates generated by tumor-derived proteases associate with necrotic tumor cell debris, which acts as a vehicle for Ag transfer that facilitates highly efficient cross-presentation in dendritic cells. Our results suggest that proteolytic systems activated in Ag donor cells during cell death may influence the availability of antigenic substrates for cross-presentation, thereby regulating the antigenicity of cell death.
Assuntos
Apresentação Cruzada , Neoplasias , Apresentação de Antígeno , Linfócitos T CD8-Positivos , Calpaína/metabolismo , Células Dendríticas , Humanos , Necrose/metabolismo , Neoplasias/metabolismoRESUMO
The principal function of inflammation is cellular defence against 'danger signals' such as tissue injury and pathogen infection to maintain the homeostasis of the organism. The initiation and progression of inflammation are not autonomous as there is substantial evidence that inflammation is known to be strongly influenced by 'neuroimmune crosstalk', involving the production and expression of soluble signalling molecules that interact with cell surface receptors. In addition, microbiota have been found to be involved in the development and function of the nervous and immune systems and play an important role in health and disease. Herein, we provide an outline of the mechanisms of neuroimmune communication in the regulation of inflammation and immune response and then provide evidence for the involvement of microbiota in the development and functions of the host nervous and immune systems. It appears that the nervous and immune systems in multicellular organisms have co-evolved with the microbiota, such that all components are in communication to maximise the ability of the organism to adapt to a wide range of environmental stresses to maintain or restore tissue homeostasis.
RESUMO
Colorectal cancer is primarily a disease of the developed world. The incidence rate has continued to increase over time, reflecting both demographic and lifestyle changes, which have resulted in genomic and epigenomic modifications. Many of the epigenetic modifications occur in genes known to be closely associated with embryonic development and cellular growth. In particular, the paired box (PAX) transcription factors are crucial for correct tissue development during embryogenesis due to their role in regulating genes involved in proliferation and cellular maintenance. In a number of cancers, including colorectal cancer, the PAX transcription factors are aberrantly expressed, driving proliferation and thus increased tumour growth. Here we have synthesized and used a small molecule PAX inhibitor, EG1, to inhibit PAX transcription factors in HCT116 colorectal cell cultures which resulted in reduced proliferation after three days of treatment. These results highlight PAX transcription factors as playing an important role in the proliferation of HCT116 colorectal cancer cells, suggesting there may be a potential therapeutic role for inhibition of PAX in limiting cancer cell growth.
RESUMO
Cancer is one of the leading causes of death globally. Epidemiological studies have strongly linked a diet high in fruits to a lower incidence of cancer. Furthermore, extensive research shows that secondary plant metabolites known as phytochemicals, which are commonly found in fruits, have onco-preventive and chemo-protective effects. Apple is a commonly consumed fruit worldwide that is available all year round and is a rich source of phytochemicals. In this review, we summarize the association of apple consumption with cancer incidence based on findings from epidemiological and cohort studies. We further provide a comprehensive review of the main phytochemical patterns observed in apples and their bioavailability after consumption. Finally, we report on the latest findings from in vitro and in vivo studies highlighting some of the key molecular mechanisms targeted by apple phytochemicals in relation to inhibiting multiple 'hallmarks of cancer' that are important in the progression of cancer.
Assuntos
Frutas/química , Malus/química , Compostos Fitoquímicos/farmacologia , Extratos Vegetais/farmacologia , Antineoplásicos/farmacologia , Antioxidantes/farmacologia , Disponibilidade Biológica , Quimioprevenção , Dieta , Humanos , Neoplasias/epidemiologia , Neoplasias/prevenção & controle , Fenóis/farmacologia , Triterpenos/farmacologiaRESUMO
All living organisms have developed processes to sense and address environmental changes to maintain a stable internal state (homeostasis). When activated, the p53 tumour suppressor maintains cell and organ integrity and functions in response to homeostasis disruptors (stresses) such as infection, metabolic alterations and cellular damage. Thus, p53 plays a fundamental physiological role in maintaining organismal homeostasis. The TP53 gene encodes a network of proteins (p53 isoforms) with similar and distinct biochemical functions. The p53 network carries out multiple biological activities enabling cooperation between individual cells required for long-term survival of multicellular organisms (animals) in response to an ever-changing environment caused by mutation, infection, metabolic alteration or damage. In this review, we suggest that the p53 network has evolved as an adaptive response to pathogen infections and other environmental selection pressures.
Assuntos
Genes p53 , Homeostase , Proteína Supressora de Tumor p53 , Animais , Infecções , Mutação , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Estresse Fisiológico , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismoRESUMO
The p53 isoform, Δ133p53ß, is critical in promoting cancer. Here we report that Δ133p53ß activity is regulated through an aggregation-dependent mechanism. Δ133p53ß aggregates were observed in cancer cells and tumour biopsies. The Δ133p53ß aggregation depends on association with interacting partners including p63 family members or the CCT chaperone complex. Depletion of the CCT complex promotes accumulation of Δ133p53ß aggregates and loss of Δ133p53ß dependent cancer cell invasion. In contrast, association with p63 family members recruits Δ133p53ß from aggregates increasing its intracellular mobility. Our study reveals novel mechanisms of cancer progression for p53 isoforms which are regulated through sequestration in aggregates and recruitment upon association with specific partners like p63 isoforms or CCT chaperone complex, that critically influence cancer cell features like EMT, migration and invasion.
Assuntos
Regulação Neoplásica da Expressão Gênica , Neoplasias/genética , Agregação Patológica de Proteínas , Proteína Supressora de Tumor p53/genética , Animais , Linhagem Celular Tumoral , Humanos , Células MCF-7 , Camundongos , Modelos Moleculares , Mutação , Invasividade Neoplásica , Neoplasias/metabolismo , Neoplasias/patologia , Agregados Proteicos , Conformação Proteica , Isoformas de Proteínas/química , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Desdobramento de Proteína , Proteína Supressora de Tumor p53/química , Proteína Supressora de Tumor p53/metabolismoRESUMO
PURPOSE: Hypoxia-activated prodrugs (HAPs) have the potential for eliminating chemo- and radiation-resistant hypoxic tumour cells, but their activity is often compromised by limited penetration into hypoxic zones. Nitrochloromethylbenzindoline (nitroCBI) HAPs are reduced in hypoxic cells to highly cytotoxic DNA minor groove alkylating aminoCBI metabolites. In this study, we investigate whether a lead nitroCBI, SN30548, generates a significant bystander effect through the diffusion of its aminoCBI metabolite and whether this compensates for any diffusion limitations of the prodrug in tumour tissue. METHODS: Metabolism and uptake of the nitroCBI in oxic and anoxic cells, and diffusion through multicellular layer cultures, was characterised by LC-MS/MS. To quantify bystander effects, clonogenic cell killing of HCT116 cells was assessed in multicellular spheroid co-cultures comprising cells transfected with cytochrome P450 oxidoreductase (POR) or E. coli nitroreductase NfsA. Spatially-resolved pharmacokinetic/pharmacodynamic (PK/PD) models, parameterised by the above measurements, were developed for spheroids and tumours using agent-based and Green's function modelling, respectively. RESULTS: NitroCBI was reduced to aminoCBI by POR under anoxia and by NfsA under oxia, and was the only significant cytotoxic metabolite in both cases. In spheroid co-cultures comprising 30% NfsA-expressing cells, non-metabolising cells were as sensitive as the NfsA cells, demonstrating a marked bystander effect. Agent-based PK/PD models provided good prediction of cytotoxicity in spheroids, while use of the same parameters in a Green's function model for a tumour microregion demonstrated that local diffusion of aminoCBI overcomes the penetration limitation of the prodrug. CONCLUSIONS: The nitroCBI HAP SN30548 generates a highly efficient bystander effect through local diffusion of its active metabolite in tumour tissue.
Assuntos
Efeito Espectador/efeitos dos fármacos , Hipóxia Celular , Indóis/farmacologia , Modelos Biológicos , Cromatografia Líquida , Técnicas de Cocultura , Proteínas de Escherichia coli/genética , Células HCT116 , Humanos , Indóis/farmacocinética , NADPH-Ferri-Hemoproteína Redutase/genética , Nitrorredutases/genética , Pró-Fármacos , Esferoides Celulares/citologia , Espectrometria de Massas em TandemRESUMO
INTRODUCTION: Markers of oxidative and psychological stress are elevated during high-intensity exercise. Additionally, when energy intake does not match expenditure, women who actively participate in sports and exercise are at risk of developing menstrual dysfunction, infertility, and osteoporosis. Vitamin C is known to reduce exercise-induced stress. Here, this study investigates the efficacy of consuming vitamin C from SunGold kiwifruit compared to in isolation, in ameliorating exercise-induced stress in recreationally active women. METHODS AND RESULTS: Ten eumenorrheic women are recruited in this crossover study and attended three exercise and one rest trial. In the exercise trials, participants consumed 300 mg vitamin C from kiwifruit or drink, or have a placebo drink, followed by 30-min exercise on a cycle ergometer at 60% power. During rest visit, participants sat quietly and consumed a placebo drink. Salivary uric acid (oxidative stress) and cortisol (psychological stress) are measured before and immediately after exercise for 2 h. Both vitamin C and kiwifruit reduced exercise-induced uric acid, immediately after exercise. Vitamin C drink continued to decrease uric acid for a further 30 min and slightly attenuated exercise-induced cortisol. CONCLUSIONS: Consuming liquid vitamin C prior to high-intensity cycling appears more effective than eating kiwifruit, in ameliorating exercise-induced stress in recreationally active women of reproductive age.
Assuntos
Actinidia , Ácido Ascórbico/administração & dosagem , Exercício Físico/fisiologia , Frutas , Estresse Oxidativo/efeitos dos fármacos , Estresse Psicológico/tratamento farmacológico , Adulto , Ciclismo , Estudos Cross-Over , Feminino , Humanos , Hidrocortisona/análise , Placebos , Saliva/química , Adulto JovemRESUMO
The TP53 gene locus is capable of producing multiple RNA transcripts encoding the different p53 protein isoforms. We recently described multiplex long amplicon droplet digital PCR (ddPCR) assays to quantify seven of eight TP53 reference transcripts in human tumors. Here, we describe a new long amplicon ddPCR assay to quantify expression of the eighth TP53 reference transcript encoding ∆40p53α. We then applied these assays, alongside DNA sequencing of the TP53 gene locus, to tumors from a cohort of New Zealand (NZ) breast cancer patients. We found a high prevalence of mutations at TP53 splice sites in the NZ breast cancer cohort. Mutations at TP53 intron 4 splice sites were associated with overexpression of ∆133TP53 transcripts. Cox proportional hazards survival analysis showed that interplay between TP53 mutation status and expression of TP53 transcript variants was significantly associated with patient outcome, over and above standard clinical and pathological information. In particular, patients with no TP53 mutation and a low ratio of TP53 transcripts t2 to t1, which derive from alternative intron 1 acceptor splice sites, had a remarkably good outcome. We suggest that this type of analysis, integrating mutation and transcript expression, provides a step-change in our understanding of TP53 in cancer.
RESUMO
The tumour suppressor gene, TES, is frequently methylated in many human tumours. Previously, we demonstrated that TES promoter methylation and transcriptional silencing was the most common molecular abnormality detected in childhood acute lymphoblastic leukaemia (ALL). Trp53-mutant mouse models predominantly develop B- and T-cell lymphomas, which are widely considered equivalent to childhood T and B ALL. In this study, we examined expression of Tes transcript and Testin protein in spontaneous tumours obtained from three Trp53-mutant mouse models. Using immunohistochemistry, we report that 47% of lymphomas lacked Testin protein compared to only 7% of non-lymphoid tumours. Further examination of the lymphomas from Trp53-null and Trp53-mΔpro homozygous mutant mice revealed that 63% and 69% respectively of the isolated lymphomas were Testin negative, which is similar to reported rates in childhood T-ALL. Surprisingly, lymphomas from Trp53-Δ122 mice were frequently Testin positive (> 60%), suggesting that the presence of the Trp53-Δ122 protein appeared to mitigate the requirement for Tes silencing in lymphomagenesis. Quantitative RT-PCR results confirmed that this lack of Testin protein was due to Tes transcriptional silencing, although bisulfite sequencing demonstrated that this was not due to promoter methylation. These results are consistent with the Testin protein having lymphoid tumour suppressor activity in both mice and humans.
Assuntos
Proteínas do Citoesqueleto/metabolismo , Linfoma/metabolismo , Proteínas de Ligação a RNA/metabolismo , Proteína Supressora de Tumor p53/genética , Animais , Regulação Neoplásica da Expressão Gênica/genética , Inativação Gênica , Linfoma/genética , Camundongos , Camundongos Mutantes/genética , Reação em Cadeia da Polimerase em Tempo RealRESUMO
We investigated the influence of selected TP53 SNPs in exon 4 and intron 4 on cancer risk, clinicopathological features and expression of TP53 isoforms. The intron 4 SNPs were significantly over-represented in cohorts of mixed cancers compared to three ethnically matched controls, suggesting they confer increased cancer risk. Further analysis showed that heterozygosity at rs1042522(GC) and either of the two intronic SNPs rs9895829(TC) and rs2909430(AG) confer a 2.34-5.35-fold greater risk of developing cancer. These SNP combinations were found to be associated with shorter patient survival for glioblastoma and prostate cancer. Additionally, these SNPs were associated with tumor-promoting inflammation as evidenced by high levels of infiltrating immune cells and expression of the Δ133TP53 and TP53ß transcripts. We propose that these SNP combinations allow increased expression of the Δ133p53 isoforms to promote the recruitment of immune cells that create an immunosuppressive environment leading to cancer progression.
RESUMO
High levels of the cold shock protein Y-box-binding protein-1, YB-1, are tightly correlated with increased cell proliferation and progression. However, the precise mechanism by which YB-1 regulates proliferation is unknown. Here, we found that YB-1 depletion in several cancer cell lines and in immortalized fibroblasts resulted in cytokinesis failure and consequent multinucleation. Rescue experiments indicated that YB-1 was required for completion of cytokinesis. Using confocal imaging we found that YB-1 was essential for orchestrating the spatio-temporal distribution of the microtubules, ß-actin and the chromosome passenger complex (CPC) to define the cleavage plane. We show that phosphorylation at six serine residues was essential for cytokinesis, of which novel sites were identified using mass spectrometry. Using atomistic modelling we show how phosphorylation at multiple sites alters YB-1 conformation, allowing it to interact with protein partners. Our results establish phosphorylated YB-1 as a critical regulator of cytokinesis, defining precisely how YB-1 regulates cell division.
RESUMO
Diseases of the colon are a big health burden in both men and women worldwide ranging from acute infection to cancer. Environmental and genetic factors influence disease onset and outcome in multiple colonic pathologies. The importance of inflammation in the onset, progression and outcome of multiple colonic pathologies is gaining more traction as the evidence from recent research is considered. In this review, we provide an update on the literature to understand how genetics, diet, and the gut microbiota influence the crosstalk between immune and nonimmune cells resulting in inflammation observed in multiple colonic pathologies. Specifically, we focus on four colonic diseases two of which have a more established association with inflammation (inflammatory bowel disease and colorectal cancer) while the other two have a less understood relationship with inflammation (diverticular disease and irritable bowel syndrome).
Assuntos
Colite/fisiopatologia , Doenças do Colo/fisiopatologia , Animais , Colite/etiologia , Colite/imunologia , Doenças do Colo/etiologia , Doenças do Colo/imunologia , Neoplasias Colorretais/fisiopatologia , Progressão da Doença , Doenças Diverticulares/fisiopatologia , Feminino , Microbioma Gastrointestinal/imunologia , Microbioma Gastrointestinal/fisiologia , Humanos , Inflamação/etiologia , Inflamação/imunologia , Inflamação/fisiopatologia , Doenças Inflamatórias Intestinais/fisiopatologia , Síndrome do Intestino Irritável/fisiopatologia , Masculino , Modelos Biológicos , Fatores de RiscoRESUMO
TP53, the most commonly-mutated gene in cancer, undergoes complex alternative splicing. Different TP53 transcripts play different biological roles, both in normal function and in the progression of diseases such as cancer. The study of TP53's alternative RNA splice forms and their use as clinical biomarkers has been hampered by limited specificity and quantitative accuracy of current methods. TP53 RNA splice variants differ at both 5' and 3' ends, but because they have a common central region of 618 bp, the individual TP53 transcripts are impossible to specifically detect and precisely quantitate using standard PCR-based methods or short-read RNA sequencing. Therefore, we devised multiplex probe-based long amplicon droplet digital PCR (ddPCR) assays, which for the first time allow precise end-to-end quantitation of the seven major TP53 transcripts, with amplicons ranging from 0.85 to 1.85 kb. Multiple modifications to standard ddPCR assay procedures were required to enable specific co-amplification of these long transcripts and to overcome issues with secondary structure. Using these assays, we show that several TP53 transcripts are co-expressed in breast cancers, and illustrate the potential for this method to identify novel TP53 transcripts in tumour cells. This capability will facilitate a new level of biological and clinical understanding of the alternatively-spliced TP53 isoforms.
RESUMO
Elevated levels of nuclear Y-box binding protein 1 (YB-1) are linked to poor prognosis in cancer. It has been proposed that entry into the nucleus requires specific proteasomal cleavage. However, evidence for cleavage is contradictory and high YB-1 levels are prognostic regardless of cellular location. Here, using confocal microscopy and mass spectrometry, we find no evidence of specific proteolytic cleavage. Doxorubicin treatment, and the resultant G2 arrest, leads to a significant increase in the number of cells where YB-1 is not found in the cytoplasm, suggesting that its cellular localisation is variable during the cell cycle. Live cell imaging reveals that the location of YB1 is linked to progression through the cell cycle. Primarily perinuclear during G1 and S phases, YB-1 enters the nucleus as cells transition through late G2/M and exits at the completion of mitosis. Atomistic modelling and molecular dynamics simulations show that dephosphorylation of YB1 at serine residues 102, 165 and 176 increases the accessibility of the nuclear localisation signal (NLS). We propose that this conformational change facilitates nuclear entry during late G2/M. Thus, the phosphorylation status of YB1 determines its cellular location.
RESUMO
INTRODUCTION: Circulating biomarkers have been increasingly used in the clinical management of breast cancer. The present study evaluated whether RNAs and a protein present in the plasma of patients with breast cancer might have utility as prognostic biomarkers complementary to existing clinical tests. PATIENTS AND METHODS: We performed microarray profiling of small noncoding RNAs in plasma samples from 30 patients with breast cancer and 10 control individuals. Two small noncoding RNAs, including microRNA (miR)-923, were selected and quantified in plasma samples from an evaluation cohort of 253 patients with breast cancer, using droplet digital polymerase chain reaction. We also measured cancer antigen (CA) 15-3 protein levels in these samples. Cox regression survival analysis was used to determine which markers were associated with patient prognosis. RESULTS: As independent markers of prognosis, the plasma levels of miR-923 and CA 15-3 at the time of surgery for breast cancer were significantly associated with prognosis, irrespective of treatment (Cox proportional hazards, P = 3.9 × 10-3 and 1.9 × 10-9, respectively). After building a multivariable model with standard clinical and pathological features, the addition of miR-923 and CA 15-3 information into the model resulted in a significantly better predictor of disease recurrence in patients, irrespective of treatment, compared with the use of clinicopathological data alone (area under the curve at 3 years, 0.858 vs. 0.770 with clinicopathological markers only; P = .017). CONCLUSION: We propose that the plasma levels of miR-923 and CA 15-3, combined with standard clinicopathological predictors, could be used as a preoperative, noninvasive estimate of patient prognosis to identify which women might need more aggressive treatment or closer surveillance after surgery for breast cancer.