Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Tipo de estudo
Intervalo de ano de publicação
1.
Front Genet ; 11: 692, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32719719

RESUMO

Feed efficiency (FE) traits in pigs are of utmost economic importance. Genetic improvement of FE related traits in pigs might significantly reduce production cost and energy consumption. Hence, our study aimed at identifying SNPs and candidate genes associated with FE related traits, including feed conversion ratio (FCR), average daily gain (ADG), average daily feed intake (ADFI), and residual feed intake (RFI). A genome-wide association study (GWAS) was performed for the four FE related traits in 296 Landrace pigs genotyped with PorcineSNP50 BeadChip. Two different single-trait methods, single SNP linear model GWAS (LM-GWAS) and single-step GWAS (ssGWAS), were implemented. Our results showed that the two methods showed high consistency with respect to SNP identification. A total of 32 common significant SNPs associated with the four FE related traits were identified. Bioinformatics analysis revealed eight common QTL regions, of which three QTL regions related to ADFI and RFI traits were overlapped. Gene ontology analysis revealed six common candidate genes (PRELID2, GPER1, PDX1, TEX2, PLCL2, ICAM2) relevant for the four FE related traits. These genes are involved in the processes of fat synthesis and decomposition, lipid transport process, insulin metabolism, among others. Our results provide, new insights into the genetic mechanisms and candidate function genes of FE related traits in pigs. However, further investigations to validate these results are warranted.

2.
FASEB J ; 33(12): 14479-14490, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31751154

RESUMO

Hairlessness is usually a rare trait in pigs; however, in this study, we found hairless (HR) pigs at a relatively high frequency in 1 pig herd. We observed that, the lower hair shaft density of HR pigs could be mainly attributed to the lower hair follicle density, and during the embryonic period, d 39-45 were a critical stage for the formation of the hair follicle. In this regard, d 41 during gestation was a particularly important point. Hair follicle morphogenesis occurring at an early stage of embryo development is similar to humans and mice. Further analyses of association studies based on single-nucleotide polymorphism chip as well as sequence data, mRNA sequencing, immunohistochemistry, and comparative genomics demonstrated that microtubule-associated protein 2 (MAP2) is a key gene responsible for hair follicle density and 1 missense mutation of A-to-G at rs328005415 in MAP2, causing a valine-to-methionine substitution leads to the HR phenotype. Considering the high homology between pigs and humans, our research has some significance for the study of the mechanisms of skin development, hair morphogenesis, and hair loss in humans by showing that the pig may be a more appropriate model in which to study these processes.-Jiang, Y., Jiang, Y., Zhang, H., Mei, M., Song, H., Ma, X., Jiang, L., Yu, Z., Zhang, Q., Ding, X. A mutation in MAP2 is associated with prenatal hair follicle density.


Assuntos
Folículo Piloso/fisiologia , Proteínas Associadas aos Microtúbulos/metabolismo , Mutação de Sentido Incorreto/fisiologia , Suínos/embriologia , Suínos/genética , Animais , Animais Recém-Nascidos , Desenvolvimento Embrionário , Desenvolvimento Fetal , Regulação da Expressão Gênica no Desenvolvimento , Proteínas Associadas aos Microtúbulos/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA