Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Tipo de estudo
Intervalo de ano de publicação
1.
Pest Manag Sci ; 80(2): 569-576, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37732942

RESUMO

BACKGROUND: Maximizing the effectiveness of natural pest control requires a detailed understanding of how service delivery is affected by natural enemy community diversity and composition. Many studies have investigated the effects of natural enemy abundance and species richness on pest control. Studies examining the effects of evenness and species identity are fewer and have produced inconsistent results. Here we test the effects of arthropod predator community evenness and species identity on natural pest control by exposing aphid (Sitobion avenae) colonies in experimental cages to arthropod predator communities that had the same abundance and species richness but differed in evenness and dominant species. RESULTS: We found that the identity of the most dominant species in the arthropod predator community predominantly drove the pest control efficiency. However, additional to the effects of species identity, we also found a causal positive relationship between the evenness of arthropod predator communities and the suppression of pest growth. CONCLUSION: Our results provide support for the hypothesis that ecosystem service provision is generally a function of the abundance and efficiency of the most dominant species of the service-providing groups. This could partly explain why management practices aiming at promoting abundance of natural enemies often have mixed effects on pest control. Our results also demonstrate that diversity components such as evenness have important additional effects. However, in real-world ecosystems these effects may be obscured because evenness is generally confounded with abundance or species richness in natural enemy predator communities. © 2023 The Authors. Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.


Assuntos
Artrópodes , Animais , Ecossistema , Controle Biológico de Vetores/métodos , Comportamento Predatório
2.
Ecotoxicol Environ Saf ; 132: 123-31, 2016 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-27294671

RESUMO

Hepatotoxic microcystins (MCs) produced by cyanobacteria pose serious risks to aquatic ecosystems and human health, to understand elimination pathways and mechanisms for MCs, especially in a shallow and semi-enclosed eutrophic area, is of great significance. This study succeed in discerning biodegradation and adsorption of microcystin-LR (MCLR) mediated by water and/or sediment in northern part of Meiliang Bay in Lake Taihu, China, and among the first to reveal the shifts of indigenous bacterial community composition in response to MCLR-biodegradation in sediment by Illumina high-throughput sequencing (HTS). Results confirmed that biodegradation predominantly governed MCLR elimination as compared to adsorption in study area. Through faster biodegradation with a rate of 49.21µgL(-1)d(-1), lake water contributed more to overall MCLR removal than sediment. Sediment also played indispensable role in MCLR removal via primarily biodegradation by indigenous community (a rate of 17.27µgL(-1)d(-1)) and secondarily adsorption (<20% of initial concentration). HTS analysis showed that indigenous community composition shifted with decreased phylogenetic diversity in response to sediment-mediated MCLR-biodegradation. Proteobacteria became predominant (39.34-86.78%) in overall composition after biodegradation, which was mostly contributed by sharp proliferation of ß-proteobacteria (22.76-74.80%), and might closely link to MCLR-biodegradation in sediment. Moreover, the members of several genera belonging to α-proteobacteria, ß-proteobacteria and γ-proteobacteria seemed to be key degraders because of their dominance or increasing population as MCLR degraded. This study expands understanding on natural elimination mechanism for MCs, and provides guidance to reduce MCs' biological risks and guarantee ecosystem safety in aquatic habitats.


Assuntos
Microcistinas/química , Microcistinas/metabolismo , Poluentes Químicos da Água/química , Poluentes Químicos da Água/metabolismo , Adsorção , Bactérias/genética , Bactérias/metabolismo , Baías/microbiologia , Biodegradação Ambiental , China , Lagos/microbiologia , Toxinas Marinhas , Filogenia , Microbiologia da Água
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA