Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Front Microbiol ; 13: 978296, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35992704

RESUMO

The importance of acetogens for H2 turnover and overall anaerobic degradation in peatlands remains elusive. In the well-studied minerotrophic peatland fen Schlöppnerbrunnen, H2-consuming acetogens are conceptualized to be largely outcompeted by iron reducers, sulfate reducers, and hydrogenotrophic methanogens in bulk peat soil. However, in root zones of graminoids, fermenters thriving on rhizodeposits and root litter might temporarily provide sufficient H2 for acetogens. In the present study, root-free peat soils from around the roots of Molinia caerulea and Carex rostrata (i.e., two graminoids common in fen Schlöpnnerbrunnen) were anoxically incubated with or without supplemental H2 to simulate conditions of high and low H2 availability in the fen. In unsupplemented soil treatments, H2 concentrations were largely below the detection limit (∼10 ppmV) and possibly too low for acetogens and methanogens, an assumption supported by the finding that neither acetate nor methane substantially accumulated. In the presence of supplemental H2, acetate accumulation exceeded CH4 accumulation in Molinia soil whereas acetate and methane accumulated equally in Carex soil. However, reductant recoveries indicated that initially, additional unknown processes were involved either in H2 consumption or the consumption of acetate produced by H2-consuming acetogens. 16S rRNA and 16S rRNA gene analyses revealed that potential acetogens (Clostridium, Holophagaceae), methanogens (Methanocellales, Methanobacterium), iron reducers (Geobacter), and physiologically uncharacterized phylotypes (Acidobacteria, Actinobacteria, Bacteroidetes) were stimulated by supplemental H2 in soil treatments. Phylotypes closely related to clostridial acetogens were also active in soil-free Molinia and Carex root treatments with or without supplemental H2. Due to pronounced fermentation activities, H2 consumption was less obvious in root treatments, and acetogens likely thrived on root organic carbon and fermentation products (e.g., ethanol) in addition to H2. Collectively, the data highlighted that in fen Schlöppnerbrunnen, acetogens are associated to graminoid roots and inhabit the peat soil around the roots, where they have to compete for H2 with methanogens and iron reducers. Furthermore, the study underscored that the metabolically flexible acetogens do not rely on H2, potentially a key advantage over other H2 consumers under the highly dynamic conditions characteristic for the root-zones of graminoids in peatlands.

2.
FEMS Microbiol Ecol ; 97(11)2021 11 13.
Artigo em Inglês | MEDLINE | ID: mdl-34718537

RESUMO

Fen Schlöppnerbrunnen is a moderately acidic methane-emitting peatland overgrown by Molinia caerulea and other wetland graminoids (e.g. Carex rostrata). Recently, the accumulation of H2, an indicator for fermentation, was observed with anoxically incubated C. rostrata roots but not with root-free fen soil. Based on this finding, we hypothesized that root-derived organic carbon has a higher capacity to promote fermentation processes than peat organic carbon from root-free fen soil. To address this hypothesis, C. rostrata and M. caerulea roots were anoxically incubated with or without fen soil and the product profiles of root treatments were compared with those of root-free soil treatments. Ethanol, acetate, propionate, butyrate, H2 and CO2 accumulated in root treatments and collective amounts of carbon in accumulating products were 20-200 times higher than those in root-free soil treatments, in which mainly CO2 accumulated. Analyses of 16S rRNA and 16S rRNA gene sequences revealed that Clostridium, Propionispira and Rahnella, representatives of butyrate, propionate and mixed acid fermenters, respectively, were relatively enriched in root treatments. In contrast, differences of the microbial community before and after incubation were marginal in root-free soil treatments. Collectively, these findings supported the assumed stimulatory effect of root-derived organic carbon on fen fermenters.


Assuntos
Carbono , Metano , Dióxido de Carbono , Fermentação , RNA Ribossômico 16S/genética , Solo , Microbiologia do Solo
3.
Appl Environ Microbiol ; 84(5)2018 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-29247057

RESUMO

The earthworm gut is an anoxic, saccharide-rich microzone in aerated soils. The apparent degradation of diverse saccharides in the alimentary canal of the model earthworm Lumbricusterrestris is concomitant with the production of diverse organic acids, indicating that fermentation is an ongoing process in the earthworm gut. However, little is known about how different gut-associated saccharides are fermented. The hypothesis of this investigation was that different gut-associated saccharides differentially stimulate fermentative microorganisms in gut contents of L. terrestris This hypothesis was addressed by (i) assessing the fermentation profiles of anoxic gut content microcosms that were supplemented with gut-associated saccharides and (ii) the concomitant phylogenic analysis of 16S rRNA sequences. Galactose, glucose, maltose, mannose, arabinose, fucose, rhamnose, and xylose stimulated the production of fermentation products, including H2, CO2, acetate, lactate, propionate, formate, succinate, and ethanol. Fermentation profiles were dependent on the supplemental saccharide (e.g., glucose yielded large amounts of H2 and ethanol, whereas fucose did not, and maltose yielded large amounts of lactate, whereas mannose did not). Approximately 1,750,000 16S rRNA sequences were affiliated with 37 families, and phylogenic analyses indicated that a respective saccharide stimulated a subset of the diverse phylotypes. An Aeromonas-related phylotype displayed a high relative abundance in all treatments, whereas key Enterobacteriaceae-affiliated phylotypes were stimulated by some but not all saccharides. Collectively, these results reinforce the likelihood that (i) different saccharides stimulate different fermentations in gut contents of the earthworm and (ii) facultative aerobes related to Aeromonadaceae and Enterobacteriaceae can be important drivers of these fermentations.IMPORTANCE The feeding habits of earthworms influence the turnover of elements in the terrestrial biosphere. The alimentary tract of the earthworm constitutes an anoxic saccharide-rich microzone in aerated soils that offers ingested microbes a unique opportunity for anaerobic growth. The fermentative activity of microbes in the alimentary tract are responsible for the in situ production of (i) organic compounds that can be assimilated by the earthworm and (ii) H2 that is subject to in vivo emission by the earthworm and can be trophically linked to secondary microbial events in soils. To gain insight on how fermentative members of the gut microbiome might respond to the saccharide-rich alimentary canal, this study examines the impact of diverse gut-associated saccharides on the differential activation of fermentative microbes in gut contents of the model earthworm L. terrestris.


Assuntos
Bactérias/metabolismo , Desoxiaçúcares/metabolismo , Dissacarídeos/metabolismo , Microbioma Gastrointestinal , Monossacarídeos/metabolismo , Oligoquetos/microbiologia , Animais , Bactérias/classificação , Bactérias/isolamento & purificação , Fermentação , Oligoquetos/fisiologia , RNA Bacteriano/análise , RNA Ribossômico 16S/análise
4.
Front Microbiol ; 8: 397, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28386248

RESUMO

Reduced susceptibility of Listeria monocytogenes to benzalkonium chloride (BC), a quaternary ammonium compound widely used in food processing and hospital environments, is a growing public health and food safety concern. The minimal inhibitory concentration of BC on 392 L. monocytogenes strains from Switzerland (CH) and Finland (FIN) was determined. Within this strain collection, benzalkonium chloride resistance was observed in 12.3% (24/195) of Swiss and 10.6% (21/197) of Finnish strains. In both countries, the highest prevalence of BC-resistant strains (CH: 29.4%; FIN: 38.9%) was detected among serotype 1/2c strains. Based on PCR analysis, genes coding for the qacH efflux pump system were detected for most of the BC-resistant strains (CH: 62.5%; FIN: 52.4%). Some Swiss BC-resistant strains harbored genes coding for the bcrABC (16.7%) efflux pump system, while one Finnish BC-resistant strain harbored the emrE gene previously only described among BC-resistant L. monocytogenes strains from Canada. Interestingly, a subset of BC-resistant strains (CH: 5/24, 20.8%; FIN: 9/21, 42.8%) lacked genes for efflux pumps currently known to confer BC resistance in L. monocytogenes. BC resistance analysis in presence of reserpine showed that the resistance was completely or partially efflux pump dependent in 10 out of the 14 strains lacking the known BC resistance genes. Sequence types 155 and ST403 were over-representated among these strains suggesting that these strains might share similar but yet unknown mechanisms of BC resistance.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA