Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Atmos Environ (1994) ; 290: 119372, 2022 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-36092472

RESUMO

In March 2020, the World Health Organization declared a pandemic due to the rapid and worldwide spread of the SARS-CoV-2 virus. To prevent spread of the infection social contact restrictions were enacted worldwide, which suggest a significant effect on the anthropogenic emission of gaseous and particulate pollutants in urban areas. To account for the influence of meteorological conditions on airborne pollutant concentrations, we used a Random Forest machine learning technique for predicting business as usual (BAU) pollutant concentrations of NO2 and PM10 at five observation sites in the city of Berlin, Germany, during the 2020 COVID-19 lockdown periods. The predictor variables were based on meteorological and traffic data from the period of 2017-2019. The differences between BAU and observed concentrations were used to quantify lockdown-related effects on average pollutant concentrations as well as spatial variation between individual observation sites. The comparison between predicted and observed concentrations documented good overall model performance for different evaluation periods, but better performance for NO2 (R2 = 0.72) than PM10 concentrations (R2 = 0.35). The average decrease of NO2 was 21.9% in the spring lockdown and 22.3% in the winter lockdown in 2020. PM10 concentrations showed a smaller decrease, with an average of 12.8% in the spring as well as the winter lockdown. The model results were found sensitive to depict local variation of pollutant reductions at the different sites that were mainly related to locally varying modifications in traffic intensity.

2.
Sci Total Environ ; 838(Pt 4): 156516, 2022 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-35679943

RESUMO

The worldwide restrictions of social contacts that were implemented in spring 2020 to slow down infection rates of the SARS-CoV-2 virus resulted in significant modifications in mobility behaviour of urban residents. We used three-year eddy covariance measurements of size-resolved particle number fluxes from an urban site in Berlin to estimate the effects of reduced traffic intensity on particle fluxes. Similar observations of urban surface-atmosphere exchange of size-resolved particles that focus on COVID-19 lockdown-related effects are not available, yet. Although the site remained a net emission source for ultrafine particles (UFP, Dp < 100 nm), the median upward flux of ultrafine particles (FUFP) decreased from 8.78 × 107 m-2 s-1 in the reference period to 5.44 × 107 m-2 s-1 during the lockdown. This was equivalent to a relative reduction of -38 % for median FUFP, which was similar to -35 % decrease of road traffic intensity in the flux source area during that period. The size-resolved analysis demonstrated that, on average, net deposition of UFP occurred only during night when particle emission source strength by traffic was at its minimum, whereas accumulation mode particles (100 nm < Dp < 200 nm) showed net deposition also during daytime. The results indicate the benefits of traffic reductions as a mitigation strategy to reduce UFP emissions to the urban atmosphere.


Assuntos
Poluentes Atmosféricos , COVID-19 , Poluentes Atmosféricos/análise , Atmosfera , Controle de Doenças Transmissíveis , Monitoramento Ambiental/métodos , Humanos , Tamanho da Partícula , Material Particulado/análise , SARS-CoV-2 , Emissões de Veículos/análise
3.
Sci Total Environ ; 830: 154662, 2022 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-35318060

RESUMO

The measures taken to contain the spread of COVID-19 in 2020 included restrictions of people's mobility and reductions in economic activities. These drastic changes in daily life, enforced through national lockdowns, led to abrupt reductions of anthropogenic CO2 emissions in urbanized areas all over the world. To examine the effect of social restrictions on local emissions of CO2, we analysed district level CO2 fluxes measured by the eddy-covariance technique from 13 stations in 11 European cities. The data span several years before the pandemic until October 2020 (six months after the pandemic began in Europe). All sites showed a reduction in CO2 emissions during the national lockdowns. The magnitude of these reductions varies in time and space, from city to city as well as between different areas of the same city. We found that, during the first lockdowns, urban CO2 emissions were cut with respect to the same period in previous years by 5% to 87% across the analysed districts, mainly as a result of limitations on mobility. However, as the restrictions were lifted in the following months, emissions quickly rebounded to their pre-COVID levels in the majority of sites.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , COVID-19 , Poluentes Atmosféricos/análise , Poluição do Ar/análise , COVID-19/epidemiologia , Dióxido de Carbono/análise , Controle de Doenças Transmissíveis , Monitoramento Ambiental , Humanos , Material Particulado/análise , SARS-CoV-2
4.
Sci Total Environ ; 786: 147293, 2021 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-33975115

RESUMO

As climate change progresses, urban areas are increasingly affected by water scarcity and the urban heat island effect. Evapotranspiration (ET) is a crucial component of urban greening initiatives of cities worldwide aimed at mitigating these issues. However, ET estimation methods in urban areas have so far been limited. An expanding number of flux towers in urban environments provide the opportunity to directly measure ET by the eddy covariance method. In this study, we present a novel approach to model urban ET by combining flux footprint modeling, remote sensing and geographic information system (GIS) data, and deep learning and machine learning techniques. This approach facilitates spatio-temporal extrapolation of ET at a half-hourly resolution; we tested this approach with a two-year dataset from two flux towers in Berlin, Germany. The benefit of integrating remote sensing and GIS data into models was investigated by testing four predictor scenarios. Two algorithms (1D convolutional neural networks (CNNs) and random forest (RF)) were compared. The best-performing models were then used to model ET values for the year 2019. The inclusion of GIS data extracted using flux footprints enhanced the predictive accuracy of models, particularly when meteorological data was more limited. The best-performing scenario (meteorological and GIS data) showed an RMSE of 0.0239 mm/h and R2 of 0.840 with RF and an RMSE of 0.0250 mm/h and a R2 of 0.824 with 1D CNN for the more vegetated site. The 2019 ET sum was substantially higher at the site surrounded by more urban greenery (366 mm) than at the inner-city site (223 mm), demonstrating the substantial influence of vegetation on the urban water cycle. The proposed method is highly promising for modeling ET in a heterogeneous urban environment and can support climate change mitigation initiatives of urban areas worldwide.

5.
Sci Total Environ ; 636: 818-828, 2018 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-29727848

RESUMO

Urban Heat Island (UHI) and Urban Pollution Island (UPI) are two major problems of the urban environment and have become more serious with rapid urbanization. Since UHI and UPI can interact with each other, these two issues should be studied concurrently for a better urban environment. This study investigated the interaction between the UHI and UPI in Berlin, through a combined analysis of in-situ and remote sensing observations of aerosols and meteorological variables in June, July, and August from 2010 to 2017. The atmospheric UHI (AUHI), surface UHI (SUHI), atmospheric UPI (AUPI), and near-surface UPI (NSUPI) were analyzed. The SUHI and AUPI are represented by the remote sensing land surface temperature (LST) and aerosol optical depth (AOD), and the AUHI and NSUPI are represented by the in-situ air temperature and Particulate Matter (PM10) concentrations. The study area shows spatial consistency between SUHI and AUPI, with higher LST and AOD in the urban areas. UHI strengthens the turbulent dispersion of particles in the urban areas, decreasing the NSUPI. The NSUPI intensity shows a negative relationship with the AUHI intensity, especially at night with a correlation coefficient of -0.31. The increased aerosols in urban atmosphere reduce the incoming solar radiation and increase the atmospheric longwave radiation in the urban areas. The response of the surface to the change of absorbed radiation is strong at night and weak during the day. This study estimates that the SUHI intensity is enhanced by around 12% at clear night by the increased absorbed radiation in the urban areas using an attribution method. The goal of this paper is to strengthen the understanding of the interactive influence between UHI and UPI and provide a basis for designing mitigation strategies of UHI and UPI.


Assuntos
Monitoramento Ambiental , Poluentes Ambientais/análise , Temperatura Alta , Berlim , Cidades/estatística & dados numéricos , Urbanização
6.
Int J Biometeorol ; 61(4): 575-588, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-27562029

RESUMO

Thermal infrared (TIR) cameras perfectly bridge the gap between (i) on-site measurements of land surface temperature (LST) providing high temporal resolution at the cost of low spatial coverage and (ii) remotely sensed data from satellites that provide high spatial coverage at relatively low spatio-temporal resolution. While LST data from satellite (LSTsat) and airborne platforms are routinely corrected for atmospheric effects, such corrections are barely applied for LST from ground-based TIR imagery (using TIR cameras; LSTcam). We show the consequences of neglecting atmospheric effects on LSTcam of different vegetated surfaces at landscape scale. We compare LST measured from different platforms, focusing on the comparison of LST data from on-site radiometry (LSTosr) and LSTcam using a commercially available TIR camera in the region of Bozen/Bolzano (Italy). Given a digital elevation model and measured vertical air temperature profiles, we developed a multiple linear regression model to correct LSTcam data for atmospheric influences. We could show the distinct effect of atmospheric conditions and related radiative processes along the measurement path on LSTcam, proving the necessity to correct LSTcam data on landscape scale, despite their relatively low measurement distances compared to remotely sensed data. Corrected LSTcam data revealed the dampening effect of the atmosphere, especially at high temperature differences between the atmosphere and the vegetated surface. Not correcting for these effects leads to erroneous LST estimates, in particular to an underestimation of the heterogeneity in LST, both in time and space. In the most pronounced case, we found a temperature range extension of almost 10 K.


Assuntos
Temperatura , Termografia , Atmosfera , Umidade , Itália , Microclima , Modelos Teóricos , Análise de Regressão , Reprodutibilidade dos Testes , Imagens de Satélites , Vento
7.
Environ Health Perspect ; 124(7): 927-34, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-26566198

RESUMO

BACKGROUND: Urban populations are highly vulnerable to the adverse effects of heat, with heat-related mortality showing intra-urban variations that are likely due to differences in urban characteristics and socioeconomic status. OBJECTIVES: We investigated the influence of urban green and urban blue, that is, urban vegetation and water bodies, on heat-related excess mortality in the elderly > 65 years old in Lisbon, Portugal, between 1998 and 2008. METHODS: We used remotely sensed data and geographic information to determine the amount of urban vegetation and the distance to bodies of water (the Atlantic Ocean and the Tagus Estuary). Poisson generalized additive models were fitted, allowing for the interaction between equivalent temperature [universal thermal climate index (UTCI)] and quartiles of urban greenness [classified using the Normalized Difference Vegetation Index (NDVI)] and proximity to water (≤ 4 km vs. > 4 km), while adjusting for potential confounders. RESULTS: The association between mortality and a 1°C increase in UTCI above the 99th percentile (24.8°C) was stronger for areas in the lowest NDVI quartile (14.7% higher; 95% CI: 1.9, 17.5%) than for areas in the highest quartile (3.0%; 95% CI: 2.0, 4.0%). In areas > 4 km from water, a 1°C increase in UTCI above the 99th percentile was associated with a 7.1% increase in mortality (95% CI: 6.2, 8.1%), whereas in areas ≤ 4 km from water, the estimated increase in mortality was only 2.1% (95% CI: 1.2, 3.0%). CONCLUSIONS: Urban green and blue appeared to have a mitigating effect on heat-related mortality in the elderly population in Lisbon. Increasing the amount of vegetation may be a good strategy to counteract the adverse effects of heat in urban areas. Our findings also suggest potential benefits of urban blue that may be present several kilometers from a body of water. CITATION: Burkart K, Meier F, Schneider A, Breitner S, Canário P, Alcoforado MJ, Scherer D, Endlicher W. 2016. Modification of heat-related mortality in an elderly urban population by vegetation (urban green) and proximity to water (urban blue): evidence from Lisbon, Portugal. Environ Health Perspect 124:927-934; http://dx.doi.org/10.1289/ehp.1409529.


Assuntos
Exposição Ambiental/estatística & dados numéricos , Temperatura Alta , Mortalidade/tendências , Idoso , Sistemas de Informação Geográfica , Humanos , Portugal/epidemiologia , Tecnologia de Sensoriamento Remoto , População Urbana/tendências , Abastecimento de Água/estatística & dados numéricos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA