Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 103
Filtrar
3.
medRxiv ; 2023 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-37986997

RESUMO

PURPOSE: Gamma delta T-cell receptor-positive acute lymphoblastic leukemia (γδ T-ALL) is a high-risk but poorly characterized disease. METHODS: We studied clinical features of 200 pediatric γδ T-ALL, and compared the prognosis of 93 cases to 1,067 protocol-matched non-γδ T-ALL. Genomic features were defined by transcriptome and genome sequencing. Experimental modeling was used to examine the mechanistic impacts of genomic alterations. Therapeutic vulnerabilities were identified by high throughput drug screening of cell lines and xenografts. RESULTS: γδ T-ALL in children under three was extremely high-risk with 5-year event-free survival (33% v. 70% [age 3-<10] and 73% [age ≥10], P =9.5 x 10 -5 ) and 5-year overall survival (49% v. 78% [age 3-<10] and 81% [age ≥10], P =0.002), differences not observed in non-γδ T-ALL. γδ T-ALL in this age group was enriched for genomic alterations activating LMO2 activation and inactivating STAG2 inactivation ( STAG2/LMO2 ). Mechanistically, we show that inactivation of STAG2 profoundly perturbs chromatin organization by altering enhancer-promoter looping resulting in deregulation of gene expression associated with T-cell differentiation. Drug screening showed resistance to prednisolone, consistent with clinical slow treatment response, but identified a vulnerability in DNA repair pathways arising from STAG2 inactivation, which was efficaciously targeted by Poly(ADP-ribose) polymerase (PARP) inhibition, with synergism with HDAC inhibitors. Ex-vivo drug screening on PDX cells validated the efficacy of PARP inhibitors as well as other potential targets including nelarabine. CONCLUSION: γδ T-ALL in children under the age of three is extremely high-risk and enriched for STAG2/LMO2 ALL. STAG2 loss perturbs chromatin conformation and differentiation, and STAG2/LMO2 ALL is sensitive to PARP inhibition. These data provide a diagnostic and therapeutic framework for pediatric γδ T-ALL. SUPPORT: The authors are supported by the American and Lebanese Syrian Associated Charities of St Jude Children's Research Hospital, NCI grants R35 CA197695, P50 CA021765 (C.G.M.), the Henry Schueler 41&9 Foundation (C.G.M.), and a St. Baldrick's Foundation Robert J. Arceci Innovation Award (C.G.M.), Gabriella Miller Kids First X01HD100702 (D.T.T and C.G.M.) and R03CA256550 (D.T.T. and C.G.M.), F32 5F32CA254140 (L.M.), and a Garwood Postdoctoral Fellowship of the Hematological Malignancies Program of the St Jude Children's Research Hospital Comprehensive Cancer Center (S.K.). This project was supported by the National Cancer Institute of the National Institutes of Health under the following award numbers: U10CA180820, UG1CA189859, U24CA114766, U10CA180899, U10CA180866 and U24CA196173. DISCLAIMER: The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health. The funding agencies were not directly involved in the design of the study, gathering, analysis and interpretation of the data, writing of the manuscript, or decision to submit the manuscript for publication.

4.
BMC Cancer ; 23(1): 618, 2023 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-37400763

RESUMO

BACKGROUND: Gene fusions are important cancer drivers in pediatric cancer and their accurate detection is essential for diagnosis and treatment. Clinical decision-making requires high confidence and precision of detection. Recent developments show RNA sequencing (RNA-seq) is promising for genome-wide detection of fusion products but hindered by many false positives that require extensive manual curation and impede discovery of pathogenic fusions. METHODS: We developed Fusion-sq to overcome existing disadvantages of detecting gene fusions. Fusion-sq integrates and "fuses" evidence from RNA-seq and whole genome sequencing (WGS) using intron-exon gene structure to identify tumor-specific protein coding gene fusions. Fusion-sq was then applied to the data generated from a pediatric pan-cancer cohort of 128 patients by WGS and RNA sequencing. RESULTS: In a pediatric pan-cancer cohort of 128 patients, we identified 155 high confidence tumor-specific gene fusions and their underlying structural variants (SVs). This includes all clinically relevant fusions known to be present in this cohort (30 patients). Fusion-sq distinguishes healthy-occurring from tumor-specific fusions and resolves fusions in amplified regions and copy number unstable genomes. A high gene fusion burden is associated with copy number instability. We identified 27 potentially pathogenic fusions involving oncogenes or tumor-suppressor genes characterized by underlying SVs, in some cases leading to expression changes indicative of activating or disruptive effects. CONCLUSIONS: Our results indicate how clinically relevant and potentially pathogenic gene fusions can be identified and their functional effects investigated by combining WGS and RNA-seq. Integrating RNA fusion predictions with underlying SVs advances fusion detection beyond extensive manual filtering. Taken together, we developed a method for identifying candidate gene fusions that is suitable for precision oncology applications. Our method provides multi-omics evidence for assessing the pathogenicity of tumor-specific gene fusions for future clinical decision making.


Assuntos
Neoplasias , Criança , Humanos , Neoplasias/genética , RNA-Seq , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Medicina de Precisão , Análise de Sequência de RNA/métodos , Fusão Gênica , Sequenciamento Completo do Genoma
5.
Cell Rep ; 42(4): 112373, 2023 04 25.
Artigo em Inglês | MEDLINE | ID: mdl-37060567

RESUMO

Monoallelic inactivation of CCCTC-binding factor (CTCF) in human cancer drives altered methylated genomic states, altered CTCF occupancy at promoter and enhancer regions, and deregulated global gene expression. In patients with T cell acute lymphoblastic leukemia (T-ALL), we find that acquired monoallelic CTCF-inactivating events drive subtle and local genomic effects in nearly half of t(5; 14) (q35; q32.2) rearranged patients, especially when CTCF-binding sites are preserved in between the BCL11B enhancer and the TLX3 oncogene. These solitary intervening sites insulate TLX3 from the enhancer by inducing competitive looping to multiple binding sites near the TLX3 promoter. Reduced CTCF levels or deletion of the intervening CTCF site abrogates enhancer insulation by weakening competitive looping while favoring TLX3 promoter to BCL11B enhancer looping, which elevates oncogene expression levels and leukemia burden.


Assuntos
Leucemia-Linfoma Linfoblástico de Células T Precursoras , Humanos , Fator de Ligação a CCCTC/genética , Fator de Ligação a CCCTC/metabolismo , Cromatina , Elementos Facilitadores Genéticos/genética , Mutação , Oncogenes , Leucemia-Linfoma Linfoblástico de Células T Precursoras/genética , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo , Fatores de Transcrição/metabolismo , Proteínas Supressoras de Tumor/metabolismo
7.
Haematologica ; 108(3): 732-746, 2023 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-35734930

RESUMO

Physiological and pathogenic interleukin-7-receptor (IL7R)-induced signaling provokes glucocorticoid resistance in a subset of patients with pediatric T-cell acute lymphoblastic leukemia (T-ALL). Activation of downstream STAT5 has been suggested to cause steroid resistance through upregulation of anti-apoptotic BCL2, one of its downstream target genes. Here we demonstrate that isolated STAT5 signaling in various T-ALL cell models is insufficient to raise cellular steroid resistance despite upregulation of BCL2 and BCL-XL. Upregulation of anti-apoptotic BCL2 and BCLXL in STAT5-activated T-ALL cells requires steroid-induced activation of NR3C1. For the BCLXL locus, this is facilitated by a concerted action of NR3C1 and activated STAT5 molecules at two STAT5 regulatory sites, whereas for the BCL2 locus this is facilitated by binding of NR3C1 at a STAT5 binding motif. In contrast, STAT5 occupancy at glucocorticoid response elements does not affect the expression of NR3C1 target genes. Strong upregulation of BIM, a NR3C1 pro-apoptotic target gene, upon prednisolone treatment can counterbalance NR3C1/STAT5-induced BCL2 and BCL-XL expression downstream of IL7- induced or pathogenic IL7R signaling. This explains why isolated STAT5 activation does not directly impair the steroid response. Our study suggests that STAT5 activation only contributes to steroid resistance in combination with cellular defects or alternative signaling routes that disable the pro-apoptotic and steroid-induced BIM response.


Assuntos
Glucocorticoides , Leucemia-Linfoma Linfoblástico de Células T Precursoras , Humanos , Criança , Glucocorticoides/farmacologia , Leucemia-Linfoma Linfoblástico de Células T Precursoras/tratamento farmacológico , Leucemia-Linfoma Linfoblástico de Células T Precursoras/genética , Leucemia-Linfoma Linfoblástico de Células T Precursoras/metabolismo , Fator de Transcrição STAT5/metabolismo , Esteroides , Proteínas Proto-Oncogênicas c-bcl-2/genética , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Linfócitos T/metabolismo , Apoptose
8.
Front Oncol ; 12: 905665, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36119546

RESUMO

Although long-term survival in pediatric acute lymphoblastic leukemia (ALL) currently exceeds 90%, some subgroups, defined by specific genomic aberrations, respond poorly to treatment. We previously reported that leukemias harboring deletions or mutations affecting the B-cell transcription factor IKZF1 exhibit a tumor cell intrinsic resistance to glucocorticoids (GCs), one of the cornerstone drugs used in the treatment of ALL. Here, we identified increased activation of both AKT and ERK signaling pathways as drivers of GC resistance in IKZF1-deficient leukemic cells. Indeed, combined pharmacological inhibition of AKT and ERK signaling effectively reversed GC resistance in IKZF1-deficient leukemias. As inhibitors for both pathways are under clinical investigation, their combined use may enhance the efficacy of prednisolone-based therapy in this high-risk patient group.

9.
Cancers (Basel) ; 14(16)2022 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-36010889

RESUMO

B-cell lymphoblastic lymphoma (BCP-LBL) and B-cell acute lymphoblastic leukemia (BCP-ALL) are the malignant counterparts of immature B-cells. BCP-ALL is the most common hematological malignancy in childhood, while BCP-LBL accounts for only 1% of all hematological malignancies in children. Therefore, BCP-ALL has been well studied and treatment protocols have changed over the last decades, whereas treatment for BCP-LBL has stayed roughly the same. Clinical characteristics of 364 pediatric patients with precursor B-cell malignancies were studied, consisting of BCP-LBL (n = 210) and BCP-ALL (n = 154) patients. Our results indicate that based on the clinical presentation of disease, B-cell malignancies probably represent a spectrum ranging from complete isolated medullary disease to apparent complete extramedullary disease. Hepatosplenomegaly and peripheral blood involvement are the most important discriminators, as both seen in 80% and 95% of the BCP-ALL patients and in 2% of the BCP-LBL patients, respectively. In addition, we show that the overall survival rates in this cohort differ significantly between BCP-LBL and BCP-ALL patients aged 1−18 years (p = 0.0080), and that the outcome for infants (0−1 years) with BCP-LBL is significantly decreased compared to BCP-LBL patients of all other pediatric ages (p < 0.0001).

10.
JCI Insight ; 7(13)2022 07 08.
Artigo em Inglês | MEDLINE | ID: mdl-35536646

RESUMO

Rearrangements that drive ectopic MEF2C expression have recurrently been found in patients with human early thymocyte progenitor acute lymphoblastic leukemia (ETP-ALL). Here, we show high levels of MEF2C expression in patients with ETP-ALL. Using both in vivo and in vitro models of ETP-ALL, we demonstrate that elevated MEF2C expression blocks NOTCH-induced T cell differentiation while promoting a B-lineage program. MEF2C activates a B cell transcriptional program in addition to RUNX1, GATA3, and LMO2; upregulates the IL-7R; and boosts cell survival by upregulation of BCL2. MEF2C and the Notch pathway, therefore, demarcate opposite regulators of B- or T-lineage choices, respectively. Enforced MEF2C expression in mouse or human progenitor cells effectively blocks early T cell differentiation and promotes the development of biphenotypic lymphoid tumors that coexpress CD3 and CD19, resembling human mixed phenotype acute leukemia. Salt-inducible kinase (SIK) inhibitors impair MEF2C activity and alleviate the T cell developmental block. Importantly, this sensitizes cells to prednisolone treatment. Therefore, SIK-inhibiting compounds such as dasatinib are potentially valuable additions to standard chemotherapy for human ETP-ALL.


Assuntos
Leucemia Mieloide Aguda , Animais , Diferenciação Celular/genética , Hematopoese , Leucemia Mieloide Aguda/patologia , Fatores de Transcrição MEF2/genética , Fatores de Transcrição MEF2/metabolismo , Camundongos , Transdução de Sinais
11.
Leukemia ; 36(6): 1499-1507, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35411095

RESUMO

Resistance to mitochondrial apoptosis predicts inferior treatment outcomes in patients with diverse tumor types, including T-cell acute lymphoblastic leukemia (T-ALL). However, the genetic basis for variability in this mitochondrial apoptotic phenotype is poorly understood, preventing its rational therapeutic targeting. Using BH3 profiling and exon sequencing analysis of childhood T-ALL clinical specimens, we found that mitochondrial apoptosis resistance was most strongly associated with activating mutations of JAK3. Mutant JAK3 directly repressed apoptosis in leukemia cells, because its inhibition with mechanistically distinct pharmacologic inhibitors resulted in reversal of mitochondrial apoptotic blockade. Inhibition of JAK3 led to loss of MEK, ERK and BCL2 phosphorylation, and BH3 profiling revealed that JAK3-mutant primary T-ALL patient samples were characterized by a dependence on BCL2. Treatment of JAK3-mutant T-ALL cells with the JAK3 inhibitor tofacitinib in combination with a spectrum of conventional chemotherapeutics revealed synergy with glucocorticoids, in vitro and in vivo. These findings thus provide key insights into the molecular genetics of mitochondrial apoptosis resistance in childhood T-ALL, and a compelling rationale for a clinical trial of JAK3 inhibitors in combination with glucocorticoids for patients with JAK3-mutant T-ALL.


Assuntos
Leucemia-Linfoma Linfoblástico de Células T Precursoras , Apoptose , Glucocorticoides , Humanos , Janus Quinase 3/genética , Mutação , Leucemia-Linfoma Linfoblástico de Células T Precursoras/tratamento farmacológico , Leucemia-Linfoma Linfoblástico de Células T Precursoras/genética , Leucemia-Linfoma Linfoblástico de Células T Precursoras/patologia , Proteínas Proto-Oncogênicas c-bcl-2/genética , Linfócitos T/patologia
12.
Nat Commun ; 13(1): 1048, 2022 02 25.
Artigo em Inglês | MEDLINE | ID: mdl-35217681

RESUMO

Protein kinase inhibitors are amongst the most successful cancer treatments, but targetable kinases activated by genomic abnormalities are rare in T cell acute lymphoblastic leukemia. Nevertheless, kinases can be activated in the absence of genetic defects. Thus, phosphoproteomics can provide information on pathway activation and signaling networks that offer opportunities for targeted therapy. Here, we describe a mass spectrometry-based global phosphoproteomic profiling of 11 T cell acute lymphoblastic leukemia cell lines to identify targetable kinases. We report a comprehensive dataset consisting of 21,000 phosphosites on 4,896 phosphoproteins, including 217 kinases. We identify active Src-family kinases signaling as well as active cyclin-dependent kinases. We validate putative targets for therapy ex vivo and identify potential combination treatments, such as the inhibition of the INSR/IGF-1R axis to increase the sensitivity to dasatinib treatment. Ex vivo validation of selected drug combinations using patient-derived xenografts provides a proof-of-concept for phosphoproteomics-guided design of personalized treatments.


Assuntos
Leucemia-Linfoma Linfoblástico de Células T Precursoras , Linhagem Celular Tumoral , Dasatinibe/farmacologia , Dasatinibe/uso terapêutico , Humanos , Fosforilação , Leucemia-Linfoma Linfoblástico de Células T Precursoras/tratamento farmacológico , Leucemia-Linfoma Linfoblástico de Células T Precursoras/metabolismo , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico , Linfócitos T/metabolismo
13.
Hemasphere ; 6(1): e668, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34964038

RESUMO

This study describes the clinical characteristics of a complete Dutch T-cell lymphoblastic lymphoma (T-LBL) cohort, including second primary malignancies and comorbidities. We show that over 10% of patients in this complete T-LBL cohort have been diagnosed with a cancer predisposition syndrome (CPS), consisting almost exclusively of constitutional mismatch repair deficiency (CMMRD). The clinical characteristics of sporadic T-LBL patients were compared with T-LBL patients that have been diagnosed with CMMRD. This shows that disease presentation is comparable but that disease localization in CMMRD patients might be more localized. The percentage of CPS seems reliable considering the completeness of the cohort of Dutch T-LBL patients and might even be an underestimation (possibility of undiagnosed CPS patients in cohort). As the frequency of an underlying predisposition syndrome among T-LBL patients may be underestimated at present, we advocate for screening all pediatric T-LBL patients for the presence of germline mutations in mismatch repair genes.

14.
Blood Cancer Discov ; 2(1): 19-31, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34661151

RESUMO

T-cell acute lymphoblastic leukemia (T-ALL) is an aggressive hematologic malignancy characterized by aberrant proliferation of immature thymocytes. Despite an overall survival of 80% in the pediatric setting, 20% of patients with T-ALL ultimately die from relapsed or refractory disease. Therefore, there is an urgent need for novel therapies. Molecular genetic analyses and sequencing studies have led to the identification of recurrent T-ALL genetic drivers. This review summarizes the main genetic drivers and targetable lesions of T-ALL and gives a comprehensive overview of the novel treatments for patients with T-ALL that are currently under clinical investigation or that are emerging from preclinical research. SIGNIFICANCE: T-ALL is driven by oncogenic transcription factors that act along with secondary acquired mutations. These lesions, together with active signaling pathways, may be targeted by therapeutic agents. Bridging research and clinical practice can accelerate the testing of novel treatments in clinical trials, offering an opportunity for patients with poor outcome.


Assuntos
Leucemia-Linfoma Linfoblástico de Células T Precursoras , Criança , Humanos , Mutação , Oncogenes , Leucemia-Linfoma Linfoblástico de Células T Precursoras/tratamento farmacológico , Transdução de Sinais/genética , Timócitos/metabolismo
16.
Br J Haematol ; 194(3): 613-616, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34212378

RESUMO

T-ALL is rare in infancy with only 10 (1.5%) of 651 patients of that subtype in the Interfant-06 infant ALL trial. We report 3 cases of t(6;7) (TCR/MYB) infant T-cell Acute Lymphoblastic Leukaemia who appear to have a distinct clinical presentation with CNS disease and refractory disease or late relapse.


Assuntos
Leucemia-Linfoma Linfoblástico de Células T Precursoras/genética , Proteínas Proto-Oncogênicas c-myb/genética , Receptores de Antígenos de Linfócitos T alfa-beta/genética , Genes Codificadores da Cadeia beta de Receptores de Linfócitos T , Humanos , Lactente , Translocação Genética
17.
Blood ; 138(23): 2383-2395, 2021 12 09.
Artigo em Inglês | MEDLINE | ID: mdl-34280258

RESUMO

Asparaginase (ASNase) therapy has been a mainstay of acute lymphoblastic leukemia (ALL) protocols for decades and shows promise in the treatment of a variety of other cancers. To improve the efficacy of ASNase treatment, we used a CRISPR/Cas9-based screen to identify actionable signaling intermediates that improve the response to ASNase. Both genetic inactivation of Bruton's tyrosine kinase (BTK) and pharmacological inhibition by the BTK inhibitor ibrutinib strongly synergize with ASNase by inhibiting the amino acid response pathway, a mechanism involving c-Myc-mediated suppression of GCN2 activity. This synthetic lethal interaction was observed in 90% of patient-derived xenografts, regardless of the genomic subtype. Moreover, ibrutinib substantially improved ASNase treatment response in a murine PDX model. Hence, ibrutinib may be used to enhance the clinical efficacy of ASNase in ALL. This trial was registered at www.clinicaltrials.gov as # NCT02884453.


Assuntos
Adenina/análogos & derivados , Tirosina Quinase da Agamaglobulinemia/antagonistas & inibidores , Aminoácidos/metabolismo , Antineoplásicos/uso terapêutico , Asparaginase/uso terapêutico , Piperidinas/uso terapêutico , Leucemia-Linfoma Linfoblástico de Células Precursoras/tratamento farmacológico , Adenina/farmacologia , Adenina/uso terapêutico , Tirosina Quinase da Agamaglobulinemia/metabolismo , Animais , Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Asparaginase/farmacologia , Linhagem Celular Tumoral , Humanos , Camundongos , Piperidinas/farmacologia , Leucemia-Linfoma Linfoblástico de Células Precursoras/metabolismo , Transdução de Sinais/efeitos dos fármacos
18.
Blood ; 138(12): 1040-1052, 2021 09 23.
Artigo em Inglês | MEDLINE | ID: mdl-33970999

RESUMO

Tight regulation of IL-7Rα expression is essential for normal T-cell development. IL-7Rα gain-of-function mutations are known drivers of T-cell acute lymphoblastic leukemia (T-ALL). Although a subset of patients with T-ALL display high IL7R messenger RNA levels and cases with IL7R gains have been reported, the impact of IL-7Rα overexpression, rather than mutational activation, during leukemogenesis remains unclear. In this study, overexpressed IL-7Rα in tetracycline-inducible Il7r transgenic and Rosa26 IL7R knockin mice drove potential thymocyte self-renewal, and thymus hyperplasia related to increased proliferation of T-cell precursors, which subsequently infiltrated lymph nodes, spleen, and bone marrow, ultimately leading to fatal leukemia. The tumors mimicked key features of human T-ALL, including heterogeneity in immunophenotype and genetic subtype between cases, frequent hyperactivation of the PI3K/Akt pathway paralleled by downregulation of p27Kip1 and upregulation of Bcl-2, and gene expression signatures evidencing activation of JAK/STAT, PI3K/Akt/mTOR and Notch signaling. Notably, we also found that established tumors may no longer require high levels of IL-7R expression upon secondary transplantation and progressed in the absence of IL-7, but remain sensitive to inhibitors of IL-7R-mediated signaling ruxolitinib (Jak1), AZD1208 (Pim), dactolisib (PI3K/mTOR), palbociclib (Cdk4/6), and venetoclax (Bcl-2). The relevance of these findings for human disease are highlighted by the fact that samples from patients with T-ALL with high wild-type IL7R expression display a transcriptional signature resembling that of IL-7-stimulated pro-T cells and, critically, of IL7R-mutant cases of T-ALL. Overall, our study demonstrates that high expression of IL-7Rα can promote T-cell tumorigenesis, even in the absence of IL-7Rα mutational activation.


Assuntos
Carcinogênese , Regulação Leucêmica da Expressão Gênica , Mutação , Proteínas de Neoplasias , Neoplasias Experimentais , Leucemia-Linfoma Linfoblástico de Células T Precursoras , Receptores de Interleucina-7 , Animais , Carcinogênese/genética , Carcinogênese/metabolismo , Humanos , Camundongos , Camundongos Transgênicos , Proteínas de Neoplasias/biossíntese , Proteínas de Neoplasias/genética , Neoplasias Experimentais/genética , Neoplasias Experimentais/metabolismo , Leucemia-Linfoma Linfoblástico de Células T Precursoras/genética , Leucemia-Linfoma Linfoblástico de Células T Precursoras/metabolismo , Receptores de Interleucina-7/biossíntese , Receptores de Interleucina-7/genética , Transdução de Sinais , Timócitos/metabolismo
19.
Leukemia ; 35(12): 3394-3405, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34007050

RESUMO

(Patho-)physiological activation of the IL7-receptor (IL7R) signaling contributes to steroid resistance in pediatric T-cell acute lymphoblastic leukemia (T-ALL). Here, we show that activating IL7R pathway mutations and physiological IL7R signaling activate MAPK-ERK signaling, which provokes steroid resistance by phosphorylation of BIM. By mass spectrometry, we demonstrate that phosphorylated BIM is impaired in binding to BCL2, BCLXL and MCL1, shifting the apoptotic balance toward survival. Treatment with MEK inhibitors abolishes this inactivating phosphorylation of BIM and restores its interaction with anti-apoptotic BCL2-protein family members. Importantly, the MEK inhibitor selumetinib synergizes with steroids in both IL7-dependent and IL7-independent steroid resistant pediatric T-ALL PDX samples. Despite the anti-MAPK-ERK activity of ruxolitinib in IL7-induced signaling and JAK1 mutant cells, ruxolitinib only synergizes with steroid treatment in IL7-dependent steroid resistant PDX samples but not in IL7-independent steroid resistant PDX samples. Our study highlights the central role for MAPK-ERK signaling in steroid resistance in T-ALL patients, and demonstrates the broader application of MEK inhibitors over ruxolitinib to resensitize steroid-resistant T-ALL cells. These findings strongly support the enrollment of T-ALL patients in the current phase I/II SeluDex trial (NCT03705507) and contributes to the optimization and stratification of newly designed T-ALL treatment regimens.


Assuntos
Resistencia a Medicamentos Antineoplásicos , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Leucemia-Linfoma Linfoblástico de Células T Precursoras/tratamento farmacológico , Inibidores de Proteínas Quinases/farmacologia , Esteroides/farmacologia , Animais , Apoptose , MAP Quinases Reguladas por Sinal Extracelular/genética , Humanos , Interleucina-7 , Janus Quinase 1/genética , Janus Quinase 1/metabolismo , Camundongos , Proteínas Quinases Ativadas por Mitógeno/genética , Leucemia-Linfoma Linfoblástico de Células T Precursoras/genética , Leucemia-Linfoma Linfoblástico de Células T Precursoras/metabolismo , Leucemia-Linfoma Linfoblástico de Células T Precursoras/patologia , Receptores de Interleucina-7 , Transdução de Sinais , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de Xenoenxerto
20.
Blood Cancer Discov ; 2(1): 92-109, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33458694

RESUMO

Long-range oncogenic enhancers play an important role in cancer. Yet, whether similar regulation of tumor suppressor genes is relevant remains unclear. Loss of expression of PTEN is associated with the pathogenesis of various cancers, including T-cell leukemia (T-ALL). Here, we identify a highly conserved distal enhancer (PE) that interacts with the PTEN promoter in multiple hematopoietic populations, including T-cells, and acts as a hub of relevant transcription factors in T-ALL. Consistently, loss of PE leads to reduced PTEN levels in T-ALL cells. Moreover, PE-null mice show reduced Pten levels in thymocytes and accelerated development of NOTCH1-induced T-ALL. Furthermore, secondary loss of PE in established leukemias leads to accelerated progression and a gene expression signature driven by Pten loss. Finally, we uncovered recurrent deletions encompassing PE in T-ALL, which are associated with decreased PTEN levels. Altogether, our results identify PE as the first long-range tumor suppressor enhancer directly implicated in cancer.


Assuntos
Elementos Facilitadores Genéticos , PTEN Fosfo-Hidrolase , Leucemia-Linfoma Linfoblástico de Células T Precursoras , Receptor Notch1 , Animais , Diferenciação Celular , Genes Supressores de Tumor , Camundongos , PTEN Fosfo-Hidrolase/genética , Leucemia-Linfoma Linfoblástico de Células T Precursoras/genética , Receptor Notch1/genética , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA