Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Physiol Mol Biol Plants ; 29(4): 559-577, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37187776

RESUMO

Climate change increases precipitation variability, particularly in savanna environments. We have used integrative strategies to understand the molecular mechanisms of drought tolerance, which will be crucial for developing improved genotypes. The current study compares the molecular and physiological parameters between the drought-tolerant Embrapa 48 and the sensitive BR16 genotypes. We integrated the root-shoot system's transcriptome, proteome, and metabolome to understand drought tolerance. The results indicated that Embrapa 48 had a greater capacity for water absorption due to alterations in length and volume. Drought tolerance appears to be ABA-independent, and IAA levels in the leaves partially explain the higher root growth. Proteomic profiles revealed up-regulated proteins involved in glutamine biosynthesis and proteolysis, suggesting osmoprotection and explaining the larger root volume. Dysregulated proteins in the roots belong to the phenylpropanoid pathways. Additionally, PR-like proteins involved in the biosynthesis of phenolics may act to prevent oxidative stress and as a substrate for modifying cell walls. Thus, we concluded that alterations in the root-shoot conductive vessel system are critical in promoting drought tolerance. Moreover, photosynthetic parameters from reciprocal grafting experiments indicated that the root system is more essential than the shoots in the drought tolerance mechanism. Finally, we provided a comprehensive overview of the genetic, molecular, and physiological traits involved in drought tolerance mechanisms. Supplementary Information: The online version contains supplementary material available at 10.1007/s12298-023-01307-7.

2.
Protoplasma ; 260(2): 637-649, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35953680

RESUMO

Unusual nectaries were anatomically described as being usual traits for Gentianaceae. They are small, avascularized, and formed by 3 to 5 rosette cells with labyrinthine walls around one central cell. Such as nectaries have been reported for stems, petals, and sepals of different species of the family, however, there is no information on the mechanisms involved with the synthesis and release of secretion. Thus, this work aimed to unravel the mechanism of secretion and exudation of nectar for these curious nectaries using Calolisianthus speciosus as a model. Samples were processed according to standard methods for light and electron microscopy. Leaf and sepal nectaries were described, as were those of the apex of petals where ants were observed patrolling a darkened region. The enzymatic method was used for the detection of sugars, proteins, and amino acids in leaf and sepal exudates. The nectaries of petals of C. speciosus are similar to those of its leaves, sepals, and stem, although their activities are asynchronous. Polysaccharides were detected on the labyrinthine walls of rosette cells and protein in the opposite region of the cytoplasm. Labyrinthine walls increase the contact surface between rosette cells and the central cell, allowing for the transfer of secretion. After accumulation, the secretion is released to the subcuticular space of the central cell through disruption of the cuticle. The secretion and exudation of nectar were elucidated and involve distinct organelles.


Assuntos
Formigas , Gentianaceae , Animais , Néctar de Plantas/metabolismo , Folhas de Planta/metabolismo , Formigas/metabolismo , Flores/metabolismo
3.
PLoS One ; 14(9): e0222561, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31527912

RESUMO

The stereotyped floral morphology of Neotropical Malpighiaceae species-zygomorphic and calyx with oil glands-is correlated with oil-bee pollination. In contrast, the floral trends of the Paleotropical lineages are actinomorphy and lack of calyx glands, probably due to the absence of oil-collecting bees. The Paleotropical genus Acridocarpus is an exception because of its zygomorphic, gland-bearing flowers. Glands throughout Acridocarpus inflorescences were morphoanatomically evaluated to verify the occurrence of patterns related to species and geographic distribution. Herbarium (25 species) and fresh samples of A. longifolius were processed according to standard anatomical techniques. To verify the presence of glucose and protein, strip tests were applied to the exudate. Fresh samples were fixed and submitted to histochemical tests. Based on the occurrence, number and placement of glands, three distribution patterns were recognized on the bracteole and ten on the calyx. Bract, bracteole and sepal glands have a typical nectary structure with a palisade-like epidermis and vascularized parenchyma. Glands were classified as short-stalked, sessile or immersed. Histochemical tests performed on bract and sepal glands of A. longifolius were positive for proteins, polysaccharides and phenolic compounds, and negative for oil compounds. Glucose and protein were detected in the exudate. These results allow us to recognize the glands in Acridocarpus inflorescences as nectaries. This comprehensive morphoanatomical study helps to clarify the correlation between patterns of floral morphology and secretion consumers, as well as to better understand floral evolution in Malpighiaceae across their dispersal events.


Assuntos
Flores/anatomia & histologia , Malpighiaceae/anatomia & histologia , Animais , Abelhas , Evolução Biológica , Néctar de Plantas/análise , Polinização/fisiologia
4.
Am J Bot ; 100(9): 1779-89, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24008515

RESUMO

PREMISE OF THE STUDY: Extrafloral nectaries (EFNs) are structures that secrete nectar and protect plants against herbivores and pathogens. In Gentianaceae, these structures have been described in species of Calolisianthus, Fagraea, and Anthocleista and are important morphological markers for taxonomic and phylogenetic studies. To establish a foundation for further studies, we investigated the occurrence, distribution patterns, and anatomy of EFNs on leaves of 27 species belonging to 13 genera and three tribes of neotropical Gentianaceae. • METHODS: Leaf samples were diaphanized, stained with basic fuchsin, and mounted in glycerinated gelatin. Cross sections were obtained from material embedded in methacrylate or paraffin, stained, and mounted in Permount. Polysaccharides were histochemically stained with periodic acid-Schiff stain. Samples were also examined with scanning electron microscopy. • KEY RESULTS: Unusual EFNs, visible only with light microscopy, were formed of modified epidermal cells. Each EFN consisted of 2-5 secretory cells encircling a central cell. The EFNs varied in size and in the shape and arrangement of the adjacent cells surrounding the secretory cells. EFNs occurred in all analyzed species as isolated units distributed throughout the leaf blade or as aggregates; aggregates were generally visible to the naked eye. Based on their occurrence as aggregates or isolated units and on their location on the leaf blade, six distribution patterns were identified. • CONCLUSIONS: This is the first comprehensive study of EFNs on the leaves of neotropical Gentianaceae. The data suggested that NEFs evolved from isolated units for NEFs in aggregates. The results represent a new source of data for future ecological, systematic, and phylogenetic studies in Gentianaceae.


Assuntos
Gentianaceae/anatomia & histologia , Folhas de Planta/anatomia & histologia , Evolução Biológica , Brasil , Epiderme Vegetal/anatomia & histologia , Néctar de Plantas , Estômatos de Plantas/anatomia & histologia , Especificidade da Espécie
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA